The applications of solid codes to r-R and r-D languages

被引:0
|
作者
Zuhua Liu
Yuqi Guo
Jing Leng
机构
[1] Lanzhou University,School of Mathematics and Statistics
[2] Kunming University,Department of Mathematics
来源
Soft Computing | 2019年 / 23卷
关键词
Solid code; Principal congruence; Relatively regular language; Relatively disjunctive language;
D O I
暂无
中图分类号
学科分类号
摘要
A language S on a free monoid A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} is called a solid code if S is an infix code and overlap-free. A congruence ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} on A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} is called principal if there exists L⊆A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\subseteq A^*$$\end{document} such that ρ=PL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho =P_L$$\end{document}, where PL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_L$$\end{document} is the syntactic congruence determined by L. For any solid code S over A, Reis defined a congruence σS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _S$$\end{document} on A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} by means of S and showed it is principal (Semigroup Forum 41:291–306, 1990). A new simple proof of the fact that σS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _S$$\end{document} is principal is given in this paper. Moreover, two congruences ρS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _S$$\end{document} and λS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _S$$\end{document} on A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} defined by solid code S are introduced and proved to be principal. For every class of the classification of Dr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {D}}}_{\mathbf{r}}$$\end{document} and Rr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {R}}}_{\mathbf{r}}$$\end{document}, languages are given by means of three principal congruences σS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _S$$\end{document}, ρS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _S$$\end{document} and λS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _S$$\end{document}.
引用
收藏
页码:10709 / 10716
页数:7
相关论文
共 50 条
  • [1] The applications of solid codes to r-R and r-D languages
    Liu, Zuhua
    Guo, Yuqi
    Leng, Jing
    SOFT COMPUTING, 2019, 23 (21) : 10709 - 10716
  • [2] R-D INTERNSHIP
    GERHART, HL
    INDUSTRIAL & ENGINEERING CHEMISTRY PRODUCT RESEARCH AND DEVELOPMENT, 1973, 12 (04): : 259 - 259
  • [3] THE R-R INTERVAL AND R-R VARIABILITY IN NORMAL INFANTS DURING SLEEP
    HADDAD, GG
    EPSTEIN, RA
    EPSTEIN, MAF
    LEISTNER, HL
    MELLINS, RB
    PEDIATRIC RESEARCH, 1980, 14 (06) : 809 - 811
  • [4] R-D hint tracks for low-complexity R-D optimized video streaming
    Chakareski, J
    Apostolopoulos, J
    Wee, S
    Tan, WT
    Girod, B
    2004 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXP (ICME), VOLS 1-3, 2004, : 1387 - 1390
  • [5] D-brane in R-R field background
    Ho, Pei-Ming
    Yeh, Chi-Hsien
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (03):
  • [6] D-brane in R-R field background
    Pei-Ming Ho
    Chi-Hsien Yeh
    Journal of High Energy Physics, 2011
  • [7] The Greenwich R-D system.
    Thackeray, WG
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1914, 75 (01) : 0548 - 0553
  • [8] Plan of action in R-D mining
    Laverdure, L
    Fecteau, JM
    CIM BULLETIN, 2005, 98 (1086): : 29 - 30
  • [9] On the number of simplicial complexes in R-d
    Dey, TK
    Shah, NR
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 8 (05): : 267 - 277
  • [10] R-R INTERVAL HISTOGRAM
    CROOK, BRM
    CASHMAN, PMM
    POSTGRADUATE MEDICAL JOURNAL, 1976, 52 : 46 - 53