Adjacent Vertex Distinguishing Edge Coloring of Planar Graphs Without 4-Cycles

被引:0
|
作者
Danjun Huang
Xiaoxiu Zhang
Weifan Wang
Ping Wang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] St. Francis Xavier University,Department of Mathematics, Statistics and Computer Science
关键词
Adjacent vertex distinguishing edge coloring; Planar graph; Cycle; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
The adjacent vertex distinguishing edge coloring of a graph G is a proper edge coloring of G such that the edge coloring set on any pair of adjacent vertices is distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of G is denoted by χa′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{a}'(G)$$\end{document}. It is observed that χa′(G)≥Δ(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _a'(G)\ge \Delta (G)+1$$\end{document} when G contains two adjacent vertices of degree Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)$$\end{document}. In this paper, we prove that if G is a planar graph without 4-cycles, then χa′(G)≤max{9,Δ(G)+1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _a'(G)\le \max \{9,\Delta (G)+1\}$$\end{document}.
引用
收藏
页码:3159 / 3181
页数:22
相关论文
共 50 条
  • [1] Adjacent Vertex Distinguishing Edge Coloring of Planar Graphs Without 4-Cycles
    Huang, Danjun
    Zhang, Xiaoxiu
    Wang, Weifan
    Wang, Ping
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (04) : 3159 - 3181
  • [2] The adjacent vertex distinguishing total coloring of planar graphs without adjacent 4-cycles
    Sun, Lin
    Cheng, Xiaohan
    Wu, Jianliang
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (02) : 779 - 790
  • [3] The adjacent vertex distinguishing total coloring of planar graphs without adjacent 4-cycles
    Lin Sun
    Xiaohan Cheng
    Jianliang Wu
    [J]. Journal of Combinatorial Optimization, 2017, 33 : 779 - 790
  • [4] Adjacent vertex distinguishing edge coloring of planar graphs without 3-cycles
    Huang, Danjun
    Zhang, Xiaoxiu
    Wang, Weifan
    Finbow, Stephen
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (04)
  • [5] Acyclic edge coloring of planar graphs without 4-cycles
    Wang, Weifan
    Shu, Qiaojun
    Wang, Yiqiao
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (04) : 562 - 586
  • [6] Acyclic edge coloring of planar graphs without 4-cycles
    Weifan Wang
    Qiaojun Shu
    Yiqiao Wang
    [J]. Journal of Combinatorial Optimization, 2013, 25 : 562 - 586
  • [7] A note on the total coloring of planar graphs without adjacent 4-cycles
    Wang, Hui-Juan
    Wu, Jian-Liang
    [J]. DISCRETE MATHEMATICS, 2012, 312 (11) : 1923 - 1926
  • [8] Neighbor sum distinguishing total coloring of planar graphs without 4-cycles
    Hongjie Song
    Changqing Xu
    [J]. Journal of Combinatorial Optimization, 2017, 34 : 1147 - 1158
  • [9] Neighbor sum distinguishing total coloring of planar graphs without 4-cycles
    Song, Hongjie
    Xu, Changqing
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (04) : 1147 - 1158
  • [10] Equitable Δ-Coloring of Planar Graphs without 4-cycles
    Tan, Xiang
    [J]. OPERATIONS RESEARCH AND ITS APPLICATIONS, 2010, 12 : 400 - 405