On the recovery of a time dependent diffusion coefficient for a space fractional diffusion equation

被引:0
|
作者
Muhammad Ali
Sara Aziz
Salman A. Malik
机构
[1] National University of Computer and Emerging Sciences,
[2] COMSATS University Islamabad,undefined
来源
关键词
Fractional derivative; Inverse problem; Bi-orthogonal system; Fourier’s method;
D O I
暂无
中图分类号
学科分类号
摘要
An inverse problem of recovering a time dependent diffusion coefficient for a space-fractional diffusion equation has been considered. The space fractional derivative of order 1<α<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<\alpha < 2$$\end{document} is defined in the sense of Caputo. Due to an over-determination condition of integral type, we construct a mapping. Under certain conditions on the given data and application of Banach fixed point theorem ensured the unique local existence of the solution, moreover local solution is proved to be classical. The global existence of the solution of the inverse problem is shown by using Schauder fixed point theorem. Examples are also provided to support our analysis.
引用
收藏
相关论文
共 50 条
  • [21] Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation
    Ervin, Vincent J.
    Heuer, Norbert
    Roop, John Paul
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) : 572 - 591
  • [22] Comment on Fractional Fokker–Planck Equation with Space and Time Dependent Drift and Diffusion
    Marcin Magdziarz
    Janusz Gajda
    Tomasz Zorawik
    [J]. Journal of Statistical Physics, 2014, 154 : 1241 - 1250
  • [23] Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion
    Longjin Lv
    Weiyuan Qiu
    Fuyao Ren
    [J]. Journal of Statistical Physics, 2012, 149 : 619 - 628
  • [24] Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion
    Lv, Longjin
    Qiu, Weiyuan
    Ren, Fuyao
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (04) : 619 - 628
  • [25] Approximation of the Subdiffusion Equation with Solution-dependent Fractional Time Derivative and Diffusion Coefficient
    A. Lapin
    R. Yanbarisov
    [J]. Lobachevskii Journal of Mathematics, 2024, 45 (1) : 287 - 298
  • [26] Identify the fractional order and diffusion coefficient in a fractional diffusion wave equation
    Yan, X. B.
    Zhang, Y. X.
    Wei, T.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 393
  • [27] Reconstruction of the Thermal Conductivity Coefficient in the Time Fractional Diffusion Equation
    Brociek, Rafal
    Slota, Damian
    Witula, Roman
    [J]. ADVANCES IN MODELLING AND CONTROL OF NON-INTEGER ORDER SYSTEMS, 2015, 320 : 239 - 247
  • [28] Solution for a Space-time Fractional Diffusion Equation
    Liu, Qiyu
    Lv, Longjin
    [J]. PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MODELLING, SIMULATION AND APPLIED MATHEMATICS (MSAM2017), 2017, 132 : 180 - 184
  • [29] INVERSE COEFFICIENT PROBLEM FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Durdiev, D. K.
    [J]. EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2021, 9 (01): : 44 - 54
  • [30] Determination of a Nonlinear Coefficient in a Time-Fractional Diffusion Equation
    Zeki, Mustafa
    Tinaztepe, Ramazan
    Tatar, Salih
    Ulusoy, Suleyman
    Al-Hajj, Rami
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (05)