Solution for a Space-time Fractional Diffusion Equation

被引:0
|
作者
Liu, Qiyu [1 ]
Lv, Longjin [2 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
[2] Zhejiang Univ, Ningbo Inst Technol, Ningbo 315100, Zhejiang, Peoples R China
关键词
anomalous diffusion; fractional diffusion; green function; fox function; ANOMALOUS DIFFUSION; WAVE-EQUATIONS; LEVY FLIGHTS; RANDOM-WALK; DYNAMICS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work focuses on investigating the solutions for a generalized fractional diffusion equation. This equation presents space and time fractional derivatives, includes an absorbent term and a linear external force, takes a time-dependent diffusion coefficient into account, and subjects to the natural boundaries and the general initial condition. We obtain explicit analytical expressions in terms of the Fox H functions for the probability distribution. In addition, we analyze the first passage time and the second movement distribution for the case characterized by the absence of absorbent term and external force for a semi-infinite interval with absorbing boundary condition.
引用
收藏
页码:180 / 184
页数:5
相关论文
共 50 条
  • [1] Semianalytic Solution of Space-Time Fractional Diffusion Equation
    Elsaid, A.
    Shamseldeen, S.
    Madkour, S.
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 2016
  • [2] Similarity solution to fractional nonlinear space-time diffusion-wave equation
    Silva Costa, F.
    Marao, J. A. P. F.
    Alves Soares, J. C.
    Capelas de Oliveira, E.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (03)
  • [3] Numerical Solution to the Space-Time Fractional Diffusion Equation and Inversion for the Space-Dependent Diffusion Coefficient
    Chi, Guangsheng
    Li, Gongsheng
    Sun, Chunlong
    Jia, Xianzheng
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2017, 46 (02) : 122 - 146
  • [4] COLLOCATION SOLUTION TO THE SPACE-TIME DIFFUSION EQUATION
    BIAN, S
    [J]. TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1981, 38 (JUN): : 326 - 327
  • [5] The space-time fractional diffusion equation with Caputo derivatives
    Huang F.
    Liu F.
    [J]. Journal of Applied Mathematics and Computing, 2005, 19 (1-2) : 179 - 190
  • [6] Solutions of the space-time fractional Cattaneo diffusion equation
    Qi, Haitao
    Jiang, Xiaoyun
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (11) : 1876 - 1883
  • [7] A SPACE-TIME SPECTRAL METHOD FOR THE TIME FRACTIONAL DIFFUSION EQUATION
    Li, Xianjuan
    Xu, Chuanju
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2108 - 2131
  • [8] Modeling and simulation of the fractional space-time diffusion equation
    Gomez-Aguilar, J. F.
    Miranda-Hernandez, M.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    Baleanu, D.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 30 (1-3) : 115 - 127
  • [9] The Space-Time Spectral Method for a Fractional Diffusion Equation
    Huang, Yu
    [J]. PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 347 - 350