Semianalytic Solution of Space-Time Fractional Diffusion Equation

被引:9
|
作者
Elsaid, A. [1 ]
Shamseldeen, S. [1 ]
Madkour, S. [1 ]
机构
[1] Mansoura Univ, Fac Engn, Math & Engn Phys Dept, Mansoura 35516, Egypt
关键词
D O I
10.1155/2016/2371837
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the space-time fractional diffusion equation with spatial Riesz-Feller fractional derivative and Caputo fractional time derivative. The continuation of the solution of this fractional equation to the solution of the corresponding integer order equation is proved. The series solution of this problem is obtained via the optimal homotopy analysis method (OHAM). Numerical simulations are presented to validate the method and to show the effect of changing the fractional derivative parameters on the solution behavior.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Solution for a Space-time Fractional Diffusion Equation
    Liu, Qiyu
    Lv, Longjin
    [J]. PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MODELLING, SIMULATION AND APPLIED MATHEMATICS (MSAM2017), 2017, 132 : 180 - 184
  • [2] Similarity solution to fractional nonlinear space-time diffusion-wave equation
    Silva Costa, F.
    Marao, J. A. P. F.
    Alves Soares, J. C.
    Capelas de Oliveira, E.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (03)
  • [3] Numerical Solution to the Space-Time Fractional Diffusion Equation and Inversion for the Space-Dependent Diffusion Coefficient
    Chi, Guangsheng
    Li, Gongsheng
    Sun, Chunlong
    Jia, Xianzheng
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2017, 46 (02) : 122 - 146
  • [4] COLLOCATION SOLUTION TO THE SPACE-TIME DIFFUSION EQUATION
    BIAN, S
    [J]. TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1981, 38 (JUN): : 326 - 327
  • [5] The space-time fractional diffusion equation with Caputo derivatives
    Huang F.
    Liu F.
    [J]. Journal of Applied Mathematics and Computing, 2005, 19 (1-2) : 179 - 190
  • [6] Solutions of the space-time fractional Cattaneo diffusion equation
    Qi, Haitao
    Jiang, Xiaoyun
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (11) : 1876 - 1883
  • [7] A SPACE-TIME SPECTRAL METHOD FOR THE TIME FRACTIONAL DIFFUSION EQUATION
    Li, Xianjuan
    Xu, Chuanju
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2108 - 2131
  • [8] Modeling and simulation of the fractional space-time diffusion equation
    Gomez-Aguilar, J. F.
    Miranda-Hernandez, M.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    Baleanu, D.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 30 (1-3) : 115 - 127
  • [9] The Space-Time Spectral Method for a Fractional Diffusion Equation
    Huang, Yu
    [J]. PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 347 - 350