On the recovery of a time dependent diffusion coefficient for a space fractional diffusion equation

被引:0
|
作者
Muhammad Ali
Sara Aziz
Salman A. Malik
机构
[1] National University of Computer and Emerging Sciences,
[2] COMSATS University Islamabad,undefined
来源
关键词
Fractional derivative; Inverse problem; Bi-orthogonal system; Fourier’s method;
D O I
暂无
中图分类号
学科分类号
摘要
An inverse problem of recovering a time dependent diffusion coefficient for a space-fractional diffusion equation has been considered. The space fractional derivative of order 1<α<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<\alpha < 2$$\end{document} is defined in the sense of Caputo. Due to an over-determination condition of integral type, we construct a mapping. Under certain conditions on the given data and application of Banach fixed point theorem ensured the unique local existence of the solution, moreover local solution is proved to be classical. The global existence of the solution of the inverse problem is shown by using Schauder fixed point theorem. Examples are also provided to support our analysis.
引用
收藏
相关论文
共 50 条