Semi-classical Limit of Confined Fermionic Systems in Homogeneous Magnetic Fields

被引:0
|
作者
Søren Fournais
Peter S. Madsen
机构
[1] Aarhus University,Department of Mathematics
[2] Paris-Dauphine University,CNRS & CEREMADE
[3] PSL University,undefined
来源
Annales Henri Poincaré | 2020年 / 21卷
关键词
Primary 81Q20; Secondary 35P20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a system of N interacting fermions in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {R}}^3 $$\end{document} confined by an external potential and in the presence of a homogeneous magnetic field. The intensity of the interaction has the mean-field scaling 1/N. With a semi-classical parameter ħ∼N-1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hbar \sim N^{-1/3} $$\end{document}, we prove convergence in the large N limit to the appropriate magnetic Thomas–Fermi-type model with various strength scalings of the magnetic field.
引用
收藏
页码:1401 / 1449
页数:48
相关论文
共 50 条
  • [1] Semi-classical Limit of Confined Fermionic Systems in Homogeneous Magnetic Fields
    Fournais, Soren
    Madsen, Peter S.
    ANNALES HENRI POINCARE, 2020, 21 (05): : 1401 - 1449
  • [2] The semi-classical limit of large fermionic systems
    Søren Fournais
    Mathieu Lewin
    Jan Philip Solovej
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [3] The semi-classical limit of large fermionic systems
    Fournais, Soren
    Lewin, Mathieu
    Solovej, Jan Philip
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (04)
  • [4] Semi-classical limit of large fermionic systems at positive temperature
    Lewin, Mathieu
    Madsen, Peter S.
    Triay, Arnaud
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (09)
  • [5] Barry Simon's work on electric and magnetic fields and the semi-classical limit
    Herbst, Ira W.
    SPECTRAL THEORY AND MATHEMATICAL PHYSICS: A FESTSCHRIFT IN HONOR OF BARRY SIMON'S 60TH BIRTHDAY: QUANTUM FIELD THEORY, STATISTICAL MECHANICS, AND NONRELATIVISTIC QUANTUM SYSTEMS, 2007, 76 : 443 - 461
  • [6] Quantum and semi-classical aspects of confined systems with variable mass
    Gazeau, Jean-Pierre
    Hussin, Veronique
    Moran, James
    Zelaya, Kevin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [7] On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Weak Convergence
    He, Ling-Bing
    Lu, Xuguang
    Pulvirenti, Mario
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 386 (01) : 143 - 223
  • [8] On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Weak Convergence
    Ling-Bing He
    Xuguang Lu
    Mario Pulvirenti
    Communications in Mathematical Physics, 2021, 386 : 143 - 223
  • [9] On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Asymptotic Expansion
    He, Ling-Bing
    Lu, Xuguang
    Pulvirenti, Mario
    Zhou, Yu-Long
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (12)
  • [10] A semi-classical limit and its applications
    Yu, YL
    GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS X: DIFFERENTIAL GEOMETRY IN HONOR OF PROF S.S. CHERN, 2000, : 315 - 335