Semi-classical limit of large fermionic systems at positive temperature

被引:4
|
作者
Lewin, Mathieu [1 ,2 ]
Madsen, Peter S. [3 ]
Triay, Arnaud [2 ]
机构
[1] PSL Univ, Paris Dauphine Univ, CNRS, F-75016 Paris, France
[2] PSL Univ, Paris Dauphine Univ, CEPEMADE, F-75016 Paris, France
[3] Aarhus Univ, Dept Math, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
基金
欧洲研究理事会;
关键词
HARTREE-FOCK THEORY; MEAN-FIELD; ASYMPTOTIC EXACTNESS; STATISTICAL-THEORY; EQUATION; DYNAMICS; DERIVATION; COLLAPSE; ENERGY; STATE;
D O I
10.1063/1.5094397
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a system of N interacting fermions at positive temperature in a confining potential. In the regime where the intensity of the interaction scales as 1/N and with an effective semiclassical parameter PLANCK CONSTANT OVER TWO PI = N-1/d where d is the space dimension, we prove the convergence to the corresponding Thomas-Fermi model at positive temperature.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] The semi-classical limit of large fermionic systems
    Søren Fournais
    Mathieu Lewin
    Jan Philip Solovej
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [2] The semi-classical limit of large fermionic systems
    Fournais, Soren
    Lewin, Mathieu
    Solovej, Jan Philip
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (04)
  • [3] Semi-classical Limit of Confined Fermionic Systems in Homogeneous Magnetic Fields
    Søren Fournais
    Peter S. Madsen
    Annales Henri Poincaré, 2020, 21 : 1401 - 1449
  • [4] Semi-classical Limit of Confined Fermionic Systems in Homogeneous Magnetic Fields
    Fournais, Soren
    Madsen, Peter S.
    ANNALES HENRI POINCARE, 2020, 21 (05): : 1401 - 1449
  • [5] A semi-classical limit and its applications
    Yu, YL
    GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS X: DIFFERENTIAL GEOMETRY IN HONOR OF PROF S.S. CHERN, 2000, : 315 - 335
  • [6] Analytic Eigenbranches in the Semi-classical Limit
    Haller, Stefan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (05)
  • [7] Legendrian tori and the semi-classical limit
    Foth, Tatyana
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (01) : 63 - 74
  • [8] Analytic Eigenbranches in the Semi-classical Limit
    Stefan Haller
    Complex Analysis and Operator Theory, 2020, 14
  • [9] Semi-classical limit of wave functions
    Truman, A
    Zhao, HZ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) : 1003 - 1009
  • [10] The semi-classical limit with a delta potential
    Claudio Cacciapuoti
    Davide Fermi
    Andrea Posilicano
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 453 - 489