Semi-classical limit of large fermionic systems at positive temperature

被引:4
|
作者
Lewin, Mathieu [1 ,2 ]
Madsen, Peter S. [3 ]
Triay, Arnaud [2 ]
机构
[1] PSL Univ, Paris Dauphine Univ, CNRS, F-75016 Paris, France
[2] PSL Univ, Paris Dauphine Univ, CEPEMADE, F-75016 Paris, France
[3] Aarhus Univ, Dept Math, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
基金
欧洲研究理事会;
关键词
HARTREE-FOCK THEORY; MEAN-FIELD; ASYMPTOTIC EXACTNESS; STATISTICAL-THEORY; EQUATION; DYNAMICS; DERIVATION; COLLAPSE; ENERGY; STATE;
D O I
10.1063/1.5094397
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a system of N interacting fermions at positive temperature in a confining potential. In the regime where the intensity of the interaction scales as 1/N and with an effective semiclassical parameter PLANCK CONSTANT OVER TWO PI = N-1/d where d is the space dimension, we prove the convergence to the corresponding Thomas-Fermi model at positive temperature.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Semi-classical Limit for the Quantum Zakharov System
    Fang, Yung-Fu
    Kuo, Hung-Wen
    Shih, Hsi-Wei
    Wang, Kuan-Hsiang
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (04): : 925 - 949
  • [22] Semi-classical limit of relativistic quantum mechanics
    L. Kocis
    Pramana, 2005, 65 : 147 - 152
  • [23] ON SEMI-CLASSICAL LIMIT OF NONLINEAR QUANTUM SCATTERING
    Carles, Remi
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2016, 49 (03): : 711 - 756
  • [24] Semi-classical limit of relativistic quantum mechanics
    Kocis, L
    PRAMANA-JOURNAL OF PHYSICS, 2005, 65 (01): : 147 - 152
  • [25] Semi-classical analysis in large dimension
    Helffer, B
    XIITH INTERNATIONAL CONGRESS OF MATHEMATICAL PHYSICS (ICMP '97), 1999, : 267 - 272
  • [26] SEMI-CLASSICAL METHODS AT FINITE TEMPERATURE
    DOLAN, L
    KISKIS, J
    PHYSICAL REVIEW D, 1979, 20 (02): : 505 - 513
  • [27] Non-oscillating solutions to uncoupled Ermakov systems and the semi-classical limit
    Matzkin, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (38): : 7833 - 7847
  • [28] Stationary phase, quantum mechanics and semi-classical limit
    Rezende, J
    REVIEWS IN MATHEMATICAL PHYSICS, 1996, 8 (08) : 1161 - 1185
  • [29] SEMI-CLASSICAL QUANTIZATION OF MULTIDIMENSIONAL SYSTEMS
    RAMASWAMY, R
    SIDERS, P
    MARCUS, RA
    JOURNAL OF CHEMICAL PHYSICS, 1980, 73 (10): : 5400 - 5401
  • [30] The semi-classical limit of Davey-Stewartson hierarchy
    Yi, Ge
    Liao, Xianjin
    Tian, Kelei
    Wang, Zhen
    APPLIED MATHEMATICS LETTERS, 2022, 131