Semi-classical Limit of Confined Fermionic Systems in Homogeneous Magnetic Fields

被引:0
|
作者
Søren Fournais
Peter S. Madsen
机构
[1] Aarhus University,Department of Mathematics
[2] Paris-Dauphine University,CNRS & CEREMADE
[3] PSL University,undefined
来源
Annales Henri Poincaré | 2020年 / 21卷
关键词
Primary 81Q20; Secondary 35P20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a system of N interacting fermions in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {R}}^3 $$\end{document} confined by an external potential and in the presence of a homogeneous magnetic field. The intensity of the interaction has the mean-field scaling 1/N. With a semi-classical parameter ħ∼N-1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hbar \sim N^{-1/3} $$\end{document}, we prove convergence in the large N limit to the appropriate magnetic Thomas–Fermi-type model with various strength scalings of the magnetic field.
引用
收藏
页码:1401 / 1449
页数:48
相关论文
共 50 条
  • [21] Existence of Dirac resonances in the semi-classical limit
    Kungsman, J.
    Melgaard, M.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2014, 11 (04) : 381 - 395
  • [22] Conformal blocks beyond the semi-classical limit
    Fitzpatrick, A. Liam
    Kaplan, Jared
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (05):
  • [23] A semi-classical limit of the gauge/string correspondence
    Gubser, SS
    Klebanov, IR
    Polyakov, AM
    NUCLEAR PHYSICS B, 2002, 636 (1-2) : 99 - 114
  • [24] Semi-classical limit of random walks II
    Porod, U
    Zelditch, S
    ASYMPTOTIC ANALYSIS, 1998, 18 (3-4) : 215 - 261
  • [25] Conformal blocks beyond the semi-classical limit
    A. Liam Fitzpatrick
    Jared Kaplan
    Journal of High Energy Physics, 2016
  • [26] MULTIPLE WELLS IN THE SEMI-CLASSICAL LIMIT I
    HELFFER, B
    SJOSTRAND, J
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (04) : 337 - 408
  • [27] On the semi-classical limit for the nonlinear Schrodinger equation
    Carles, Remi
    STATIONARY AND TIME DEPENDENT GROSS-PITAEVSKII EQUATIONS, 2008, 473 : 105 - 127
  • [28] Semi-classical Limit for the Quantum Zakharov System
    Fang, Yung-Fu
    Kuo, Hung-Wen
    Shih, Hsi-Wei
    Wang, Kuan-Hsiang
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (04): : 925 - 949
  • [29] Semi-classical limit of relativistic quantum mechanics
    L. Kocis
    Pramana, 2005, 65 : 147 - 152
  • [30] ON SEMI-CLASSICAL LIMIT OF NONLINEAR QUANTUM SCATTERING
    Carles, Remi
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2016, 49 (03): : 711 - 756