Sharp metastability threshold for two-dimensional bootstrap percolation

被引:0
|
作者
Alexander E. Holroyd
机构
[1] Department of Mathematics,
[2] UC Berkeley,undefined
[3] CA 94720-3840. e-mail: holroyd@math.berkeley.edu,undefined
来源
关键词
Numerical Prediction; Percolation Model; Infinite Lattice; Bootstrap Percolation; Inactive Site;
D O I
暂无
中图分类号
学科分类号
摘要
 In the bootstrap percolation model, sites in an L by L square are initially independently declared active with probability p. At each time step, an inactive site becomes active if at least two of its four neighbours are active. We study the behaviour as p→0 and L→∞ simultaneously of the probability I(L,p) that the entire square is eventually active. We prove that I(L,p)→1 if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, and I(L,p)→0 if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, where λ=π2/18. We prove the same behaviour, with the same threshold λ, for the probability J(L,p) that a site is active by time L in the process on the infinite lattice. The same results hold for the so-called modified bootstrap percolation model, but with threshold λ′=π2/6. The existence of the thresholds λ,λ′ settles a conjecture of Aizenman and Lebowitz [3], while the determination of their values corrects numerical predictions of Adler, Stauffer and Aharony [2].
引用
收藏
页码:195 / 224
页数:29
相关论文
共 50 条
  • [21] A sharper threshold for bootstrap percolation in two dimensions
    Janko Gravner
    Alexander E. Holroyd
    Robert Morris
    Probability Theory and Related Fields, 2012, 153 : 1 - 23
  • [22] Threshold value of three-dimensional bootstrap percolation
    Kurtsiefer, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (04): : 529 - 536
  • [23] Sharp thresholds in Bootstrap percolation
    Balogh, J
    Bollobás, B
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 326 (3-4) : 305 - 312
  • [24] Two-dimensional percolation threshold in confined Si nanoparticle networks
    Laube, J.
    Gutsch, S.
    Wang, D.
    Kuebel, C.
    Zacharias, M.
    Hiller, D.
    APPLIED PHYSICS LETTERS, 2016, 108 (04)
  • [25] Polluted bootstrap percolation with threshold two in all dimensions
    Gravner, Janko
    Holroyd, Alexander E.
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 175 (1-2) : 467 - 486
  • [26] Polluted bootstrap percolation with threshold two in all dimensions
    Janko Gravner
    Alexander E. Holroyd
    Probability Theory and Related Fields, 2019, 175 : 467 - 486
  • [27] Mesoscopic conductance fluctuations in two-dimensional percolation gold films near the percolation threshold
    Belevtsev, BI
    Beliayev, EY
    Kopeichenko, EY
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 2363 - 2364
  • [28] COMPLEXITY OF TWO-DIMENSIONAL BOOTSTRAP PERCOLATION DIFFICULTY: ALGORITHM AND NP-HARDNESS
    Hartarsky, Ivailo
    Mezei, Tamas Robert
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (02) : 1444 - 1459
  • [29] Two-Dimensional Continuum Percolation Threshold for Diffusing Particles of Nonzero Radius
    Saxton, Michael J.
    BIOPHYSICAL JOURNAL, 2010, 99 (05) : 1490 - 1499
  • [30] Two-Dimensional Continuum Percolation Threshold as a Function of the Radius of the Diffusing Particles
    Saxton, Michael J.
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 666A - 666A