Sharp metastability threshold for two-dimensional bootstrap percolation

被引:0
|
作者
Alexander E. Holroyd
机构
[1] Department of Mathematics,
[2] UC Berkeley,undefined
[3] CA 94720-3840. e-mail: holroyd@math.berkeley.edu,undefined
来源
关键词
Numerical Prediction; Percolation Model; Infinite Lattice; Bootstrap Percolation; Inactive Site;
D O I
暂无
中图分类号
学科分类号
摘要
 In the bootstrap percolation model, sites in an L by L square are initially independently declared active with probability p. At each time step, an inactive site becomes active if at least two of its four neighbours are active. We study the behaviour as p→0 and L→∞ simultaneously of the probability I(L,p) that the entire square is eventually active. We prove that I(L,p)→1 if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, and I(L,p)→0 if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, where λ=π2/18. We prove the same behaviour, with the same threshold λ, for the probability J(L,p) that a site is active by time L in the process on the infinite lattice. The same results hold for the so-called modified bootstrap percolation model, but with threshold λ′=π2/6. The existence of the thresholds λ,λ′ settles a conjecture of Aizenman and Lebowitz [3], while the determination of their values corrects numerical predictions of Adler, Stauffer and Aharony [2].
引用
收藏
页码:195 / 224
页数:29
相关论文
共 50 条
  • [31] SEARCH FOR LOGARITHMIC FACTORS NEAR THE TWO-DIMENSIONAL PERCOLATION-THRESHOLD
    STAUFFER, D
    PHYSICS LETTERS A, 1981, 83 (08) : 404 - 405
  • [32] Analytical approximation of the two-dimensional percolation threshold for fields of overlapping ellipses
    Yi, YB
    Sastry, AM
    PHYSICAL REVIEW E, 2002, 66 (06): : 8 - 066130
  • [33] Threshold behavior of bootstrap percolation
    Zehmakan, Ahad N.
    DISCRETE MATHEMATICS, 2021, 344 (02)
  • [34] Metastability Thresholds for Anisotropic Bootstrap Percolation in Three Dimensions
    van Enter, Aernout C. D.
    Fey, Anne
    JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (01) : 97 - 112
  • [35] Metastability Thresholds for Anisotropic Bootstrap Percolation in Three Dimensions
    Aernout C. D. van Enter
    Anne Fey
    Journal of Statistical Physics, 2012, 147 : 97 - 112
  • [36] ON THE SPREADING OF TWO-DIMENSIONAL PERCOLATION
    GRASSBERGER, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (04): : L215 - L219
  • [37] Isoperimetry in Two-Dimensional Percolation
    Biskup, Marek
    Louidor, Oren
    Procaccia, Eviatar B.
    Rosenthal, Ron
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (09) : 1483 - 1531
  • [38] ON TWO-DIMENSIONAL DIRECTED PERCOLATION
    ESSAM, JW
    GUTTMANN, AJ
    DEBELL, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (19): : 3815 - 3832
  • [39] SHARP THRESHOLD FOR PERCOLATION ON EXPANDERS
    Benjamini, Itai
    Boucheron, Stephane
    Lugosi, Gabor
    Rossignol, Raphael
    ANNALS OF PROBABILITY, 2012, 40 (01): : 130 - 145
  • [40] HAUSDORFF DIMENSION AND FLUCTUATIONS FOR THE LARGEST CLUSTER AT THE TWO-DIMENSIONAL PERCOLATION-THRESHOLD
    STAUFFER, D
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1980, 37 (01): : 89 - 91