Polluted bootstrap percolation with threshold two in all dimensions

被引:0
|
作者
Janko Gravner
Alexander E. Holroyd
机构
[1] University of California,Mathematics Department
[2] University of Washington,undefined
来源
关键词
Bootstrap percolation; Cellular automaton; Critical scaling; 60K35; 82B43;
D O I
暂无
中图分类号
学科分类号
摘要
In the polluted bootstrap percolation model, the vertices of a graph are independently declared initially occupied with probability p or closed with probability q. At subsequent steps, a vertex becomes occupied if it is not closed and it has at least r occupied neighbors. On the cubic lattice Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^d$$\end{document} of dimension d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document} with threshold r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document}, we prove that the final density of occupied sites converges to 1 as p and q both approach 0, regardless of their relative scaling. Our result partially resolves a conjecture of Morris, and contrasts with the d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} case, where Gravner and McDonald proved that the critical parameter is q/p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q/{p^2}$$\end{document}.
引用
收藏
页码:467 / 486
页数:19
相关论文
共 50 条
  • [1] Polluted bootstrap percolation with threshold two in all dimensions
    Gravner, Janko
    Holroyd, Alexander E.
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 175 (1-2) : 467 - 486
  • [2] THE SHARP THRESHOLD FOR BOOTSTRAP PERCOLATION IN ALL DIMENSIONS
    Balogh, Jozsef
    Bollobas, Bela
    Duminil-Copin, Hugo
    Morris, Robert
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) : 2667 - 2701
  • [3] A sharper threshold for bootstrap percolation in two dimensions
    Gravner, Janko
    Holroyd, Alexander E.
    Morris, Robert
    PROBABILITY THEORY AND RELATED FIELDS, 2012, 153 (1-2) : 1 - 23
  • [4] A sharper threshold for bootstrap percolation in two dimensions
    Janko Gravner
    Alexander E. Holroyd
    Robert Morris
    Probability Theory and Related Fields, 2012, 153 : 1 - 23
  • [5] POLLUTED BOOTSTRAP PERCOLATION IN THREE DIMENSIONS
    Gravner, Janko
    Holroyd, Alexander E.
    Sivakoff, David
    ANNALS OF APPLIED PROBABILITY, 2021, 31 (01): : 218 - 246
  • [6] The time of bootstrap percolation in two dimensions
    Paul Balister
    Béla Bollobás
    Paul Smith
    Probability Theory and Related Fields, 2016, 166 : 321 - 364
  • [7] The time of bootstrap percolation in two dimensions
    Balister, Paul
    Bollobas, Bela
    Smith, Paul
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 166 (1-2) : 321 - 364
  • [8] The metastability threshold for modified bootstrap percolation in d dimensions
    Holroyd, Alexander E.
    ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 : 418 - 433
  • [9] An Improved Upper Bound for Bootstrap Percolation in All Dimensions
    Uzzell, Andrew J.
    COMBINATORICS PROBABILITY & COMPUTING, 2019, 28 (06): : 936 - 960
  • [10] Bootstrap percolation in a polluted environment
    Janko Gravner
    Elaine McDonald
    Journal of Statistical Physics, 1997, 87 : 915 - 927