A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice

被引:0
|
作者
Suning Gong
Qingqin Nong
Shuyu Bao
Qizhi Fang
Ding-Zhu Du
机构
[1] Ocean University of China,School of Mathematical Science
[2] University of Texas,Department of Computer Science
来源
关键词
DR-submodular maximization; Knapsack constraint; Integer lattice; Approximation Algorithm; 90C27; 68W25; 68W40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a knapsack-constrained maximization problem of a nonnegative monotone DR-submodular function f over a bounded integer lattice [B]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\varvec{B}]$$\end{document} in R+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}_+^n$$\end{document}, max{f(x):x∈[B]and∑i=1nx(i)c(i)≤1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{f({\varvec{x}}): {\varvec{x}}\in [\varvec{B}] \text {~and~} \sum _{i=1}^n {\varvec{x}}(i)c(i)\le 1\}$$\end{document}, where n is the cardinality of a ground set N and c(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(\cdot )$$\end{document} is a cost function defined on N. Soma and Yoshida [Math. Program., 172 (2018), pp. 539-563] present a (1-e-1-O(ϵ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-e^{-1}-O(\epsilon ))$$\end{document}-approximation algorithm for this problem by combining threshold greedy algorithm with partial element enumeration technique. Although the approximation ratio is almost tight, their algorithm runs in O(n3ϵ3log3τ[log3B∞+nϵlogB∞log1ϵcmin])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\frac{n^3}{\epsilon ^3}\log ^3 \tau [\log ^3 \left\| \varvec{B}\right\| _\infty + \frac{n}{\epsilon }\log \left\| \varvec{B}\right\| _\infty \log \frac{1}{\epsilon c_{\min }}])$$\end{document} time, where cmin=minic(i)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{\min }=\min _i c(i)$$\end{document} and τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is the ratio of the maximum value of f to the minimum nonzero increase in the value of f. Besides, Ene and Nguyeˇ~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\check{\text {e}}}$$\end{document}n [arXiv:1606.08362, 2016] indirectly give a (1-e-1-O(ϵ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-e^{-1}-O(\epsilon ))$$\end{document}-approximation algorithm with O((1ϵ)O(1/ϵ4)nlog‖B‖∞log2(nlog‖B‖∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O({(\frac{1}{\epsilon })}^{ O(1/\epsilon ^4)}n \log {\Vert \varvec{B}\Vert }_\infty \log ^2{(n \log {\Vert \varvec{B}\Vert }_\infty )})$$\end{document} time. But their algorithm is random. In this paper, we make full use of the DR-submodularity over a bounded integer lattice, carry forward the greedy idea in the continuous process and provide a simple deterministic rounding method so as to obtain a feasible solution of the original problem without loss of objective value. We present a deterministic algorithm and theoretically reduce its running time to a new record, O((1ϵ)O(1/ϵ5)·nlog1cminlog‖B‖∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\big ((\frac{1}{\epsilon })^{O({1}/{\epsilon ^5})} \cdot n \log \frac{1}{c_{\min }} \log {\Vert \varvec{B}\Vert _\infty }\big )$$\end{document}, with the same approximate ratio.
引用
收藏
页码:15 / 38
页数:23
相关论文
共 50 条
  • [1] A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice
    Gong, Suning
    Nong, Qingqin
    Bao, Shuyu
    Fang, Qizhi
    Du, Ding-Zhu
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 85 (01) : 15 - 38
  • [2] Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice— Continuous Greedy Algorithm on Median Complex —
    Takanori Maehara
    So Nakashima
    Yutaro Yamaguchi
    Mathematical Programming, 2022, 194 : 85 - 119
  • [3] Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice - Continuous Greedy Algorithm on Median Complex
    Maehara, Takanori
    Nakashima, So
    Yamaguchi, Yutaro
    MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 85 - 119
  • [4] One-pass streaming algorithm for DR-submodular maximization with a knapsack constraint over the integer lattice
    Tan, Jingjing
    Zhang, Dongmei
    Zhang, Hongyang
    Zhang, Zhenning
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 99
  • [5] A fast algorithm for maximizing a non-monotone DR-submodular integer lattice function
    Nong, Qingqin
    Fang, Jiazhu
    Gong, Suning
    Feng, Yan
    Qu, Xiaoying
    THEORETICAL COMPUTER SCIENCE, 2020, 840 : 177 - 186
  • [6] Maximizing the Ratio of Monotone DR-Submodular Functions on Integer Lattice
    Chen, Sheng-Min-Jie
    Du, Dong-Lei
    Yang, Wen-Guo
    Gao, Sui-Xiang
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2025, 13 (01) : 142 - 160
  • [7] Parallel Algorithm for Non-Monotone DR-Submodular Maximization
    Ene, Alina
    Nguyen, Huy L.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [8] Parallel Algorithm for Non-Monotone DR-Submodular Maximization
    Ene, Alina
    Nguyen, Huy L.
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [9] Maximizing the Sum of a Supermodular Function and a Monotone DR-submodular Function Subject to a Knapsack Constraint on the Integer Lattice
    Tan, Jingjing
    Xu, Yicheng
    Zhang, Dongmei
    Zhang, Xiaoqing
    COMPUTATIONAL DATA AND SOCIAL NETWORKS, CSONET 2021, 2021, 13116 : 68 - 75
  • [10] Maximization of Monotone Non-submodular Functions with a Knapsack Constraint over the Integer Lattice
    Tan, Jingjing
    Wang, Fengmin
    Zhang, Xiaoqing
    Zhou, Yang
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2021, 2021, 13135 : 364 - 373