A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice

被引:0
|
作者
Suning Gong
Qingqin Nong
Shuyu Bao
Qizhi Fang
Ding-Zhu Du
机构
[1] Ocean University of China,School of Mathematical Science
[2] University of Texas,Department of Computer Science
来源
关键词
DR-submodular maximization; Knapsack constraint; Integer lattice; Approximation Algorithm; 90C27; 68W25; 68W40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a knapsack-constrained maximization problem of a nonnegative monotone DR-submodular function f over a bounded integer lattice [B]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\varvec{B}]$$\end{document} in R+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}_+^n$$\end{document}, max{f(x):x∈[B]and∑i=1nx(i)c(i)≤1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{f({\varvec{x}}): {\varvec{x}}\in [\varvec{B}] \text {~and~} \sum _{i=1}^n {\varvec{x}}(i)c(i)\le 1\}$$\end{document}, where n is the cardinality of a ground set N and c(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(\cdot )$$\end{document} is a cost function defined on N. Soma and Yoshida [Math. Program., 172 (2018), pp. 539-563] present a (1-e-1-O(ϵ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-e^{-1}-O(\epsilon ))$$\end{document}-approximation algorithm for this problem by combining threshold greedy algorithm with partial element enumeration technique. Although the approximation ratio is almost tight, their algorithm runs in O(n3ϵ3log3τ[log3B∞+nϵlogB∞log1ϵcmin])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\frac{n^3}{\epsilon ^3}\log ^3 \tau [\log ^3 \left\| \varvec{B}\right\| _\infty + \frac{n}{\epsilon }\log \left\| \varvec{B}\right\| _\infty \log \frac{1}{\epsilon c_{\min }}])$$\end{document} time, where cmin=minic(i)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{\min }=\min _i c(i)$$\end{document} and τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is the ratio of the maximum value of f to the minimum nonzero increase in the value of f. Besides, Ene and Nguyeˇ~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\check{\text {e}}}$$\end{document}n [arXiv:1606.08362, 2016] indirectly give a (1-e-1-O(ϵ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-e^{-1}-O(\epsilon ))$$\end{document}-approximation algorithm with O((1ϵ)O(1/ϵ4)nlog‖B‖∞log2(nlog‖B‖∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O({(\frac{1}{\epsilon })}^{ O(1/\epsilon ^4)}n \log {\Vert \varvec{B}\Vert }_\infty \log ^2{(n \log {\Vert \varvec{B}\Vert }_\infty )})$$\end{document} time. But their algorithm is random. In this paper, we make full use of the DR-submodularity over a bounded integer lattice, carry forward the greedy idea in the continuous process and provide a simple deterministic rounding method so as to obtain a feasible solution of the original problem without loss of objective value. We present a deterministic algorithm and theoretically reduce its running time to a new record, O((1ϵ)O(1/ϵ5)·nlog1cminlog‖B‖∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\big ((\frac{1}{\epsilon })^{O({1}/{\epsilon ^5})} \cdot n \log \frac{1}{c_{\min }} \log {\Vert \varvec{B}\Vert _\infty }\big )$$\end{document}, with the same approximate ratio.
引用
收藏
页码:15 / 38
页数:23
相关论文
共 50 条
  • [31] Resolving the Approximability of Offline and Online Non-monotone DR-Submodular Maximization over General Convex Sets
    Mualem, Loay
    Feldman, Moran
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [32] Revisiting Modified Greedy Algorithm for Monotone Submodular Maximization with a Knapsack Constraint
    Tang, Jing
    Tang, Xueyan
    Lim, Andrew
    Han, Kai
    Li, Chongshou
    Yuan, Junsong
    PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2021, 5 (01)
  • [33] A bi-criteria algorithm for online non-monotone maximization problems: DR-submodular plus concave
    Feng, Junkai
    Yang, Ruiqi
    Zhang, Haibin
    Zhang, Zhenning
    THEORETICAL COMPUTER SCIENCE, 2023, 979
  • [34] Maximizing monotone submodular functions over the integer lattice
    Tasuku Soma
    Yuichi Yoshida
    Mathematical Programming, 2018, 172 : 539 - 563
  • [35] Maximizing Monotone Submodular Functions over the Integer Lattice
    Soma, Tasuku
    Yoshida, Yuichi
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 325 - 336
  • [36] Maximizing monotone submodular functions over the integer lattice
    Soma, Tasuku
    Yoshida, Yuichi
    MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 539 - 563
  • [37] Differentially Private Submodular Maximization over Integer Lattice
    Hu, Jiaming
    Xu, Dachuan
    Du, Donglei
    Miao, Cuixia
    COMPUTATIONAL DATA AND SOCIAL NETWORKS, CSONET 2021, 2021, 13116 : 59 - 67
  • [38] A simple deterministic algorithm for symmetric submodular maximization subject to a knapsack constraint
    Amanatidis, Georgios
    Birmpas, Georgios
    Markakis, Evangelos
    INFORMATION PROCESSING LETTERS, 2020, 163
  • [39] Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint
    Amanatidis, Georgios
    Fusco, Federico
    Lazos, Philip
    Leonardi, Stefano
    Reiffenhauser, Rebecca
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 74 : 661 - 690
  • [40] Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint
    Amanatidis G.
    Fusco F.
    Lazos P.
    Leonardi S.
    Reiffenhäuser R.
    Journal of Artificial Intelligence Research, 2022, 74 : 661 - 690