A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice

被引:0
|
作者
Suning Gong
Qingqin Nong
Shuyu Bao
Qizhi Fang
Ding-Zhu Du
机构
[1] Ocean University of China,School of Mathematical Science
[2] University of Texas,Department of Computer Science
来源
关键词
DR-submodular maximization; Knapsack constraint; Integer lattice; Approximation Algorithm; 90C27; 68W25; 68W40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a knapsack-constrained maximization problem of a nonnegative monotone DR-submodular function f over a bounded integer lattice [B]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\varvec{B}]$$\end{document} in R+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}_+^n$$\end{document}, max{f(x):x∈[B]and∑i=1nx(i)c(i)≤1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{f({\varvec{x}}): {\varvec{x}}\in [\varvec{B}] \text {~and~} \sum _{i=1}^n {\varvec{x}}(i)c(i)\le 1\}$$\end{document}, where n is the cardinality of a ground set N and c(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(\cdot )$$\end{document} is a cost function defined on N. Soma and Yoshida [Math. Program., 172 (2018), pp. 539-563] present a (1-e-1-O(ϵ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-e^{-1}-O(\epsilon ))$$\end{document}-approximation algorithm for this problem by combining threshold greedy algorithm with partial element enumeration technique. Although the approximation ratio is almost tight, their algorithm runs in O(n3ϵ3log3τ[log3B∞+nϵlogB∞log1ϵcmin])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\frac{n^3}{\epsilon ^3}\log ^3 \tau [\log ^3 \left\| \varvec{B}\right\| _\infty + \frac{n}{\epsilon }\log \left\| \varvec{B}\right\| _\infty \log \frac{1}{\epsilon c_{\min }}])$$\end{document} time, where cmin=minic(i)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{\min }=\min _i c(i)$$\end{document} and τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is the ratio of the maximum value of f to the minimum nonzero increase in the value of f. Besides, Ene and Nguyeˇ~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\check{\text {e}}}$$\end{document}n [arXiv:1606.08362, 2016] indirectly give a (1-e-1-O(ϵ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-e^{-1}-O(\epsilon ))$$\end{document}-approximation algorithm with O((1ϵ)O(1/ϵ4)nlog‖B‖∞log2(nlog‖B‖∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O({(\frac{1}{\epsilon })}^{ O(1/\epsilon ^4)}n \log {\Vert \varvec{B}\Vert }_\infty \log ^2{(n \log {\Vert \varvec{B}\Vert }_\infty )})$$\end{document} time. But their algorithm is random. In this paper, we make full use of the DR-submodularity over a bounded integer lattice, carry forward the greedy idea in the continuous process and provide a simple deterministic rounding method so as to obtain a feasible solution of the original problem without loss of objective value. We present a deterministic algorithm and theoretically reduce its running time to a new record, O((1ϵ)O(1/ϵ5)·nlog1cminlog‖B‖∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\big ((\frac{1}{\epsilon })^{O({1}/{\epsilon ^5})} \cdot n \log \frac{1}{c_{\min }} \log {\Vert \varvec{B}\Vert _\infty }\big )$$\end{document}, with the same approximate ratio.
引用
收藏
页码:15 / 38
页数:23
相关论文
共 50 条
  • [41] Enhanced deterministic approximation algorithm for non-monotone submodular maximization under knapsack constraint with linear query complexity
    Pham, Canh V.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2025, 49 (01)
  • [42] Maximizing DR-submodular plus supermodular functions on the integer lattice subject to a cardinality constraint
    Zhang, Zhenning
    Du, Donglei
    Jiang, Yanjun
    Wu, Chenchen
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 80 (03) : 595 - 616
  • [43] Online Learning for Non-monotone DR-Submodular Maximization: From Full Information to Bandit Feedback
    Zhang, Qixin
    Deng, Zengde
    Chen, Zaiyi
    Zhou, Kuangqi
    Hu, Haoyuan
    Yang, Yu
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [44] Online Non-monotone DR-Submodular Maximization: 1/4 Approximation Ratio and Sublinear Regret
    Feng, Junkai
    Yang, Ruiqi
    Zhang, Haibin
    Zhang, Zhenning
    COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 118 - 125
  • [45] Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice
    Kuhnle, Alan
    Smith, J. David
    Crawford, Victoria G.
    Thai, My T.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [46] A Differentially Private Approximation Algorithm for Submodular Maximization Under a Polymatroid Constraint Over the Integer Lattice
    Hu, Jiaming
    Hao, Chunlin
    Miao, Cuixia
    Zhao, Bo
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2023,
  • [47] Differentially private submodular maximization with a cardinality constraint over the integer lattice
    Hu, Jiaming
    Xu, Dachuan
    Du, Donglei
    Miao, Cuixia
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 47 (04)
  • [48] Streaming Algorithms for Non-Submodular Functions Maximization with d-Knapsack Constraint on the Integer Lattice
    Tan, Jingjing
    Yang, Ruiqi
    Zhang, Yapu
    Zhu, Mingyue
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2023, 40 (05)
  • [49] An optimal streaming algorithm for non-submodular functions maximization on the integer lattice
    Bin Liu
    Zihan Chen
    Huijuan Wang
    Weili Wu
    Journal of Combinatorial Optimization, 2023, 45
  • [50] An optimal streaming algorithm for non-submodular functions maximization on the integer lattice
    Liu, Bin
    Chen, Zihan
    Wang, Huijuan
    Wu, Weili
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (01)