Combinatorial interior point methods for generalized network flow problems

被引:0
|
作者
Donald Goldfarb
Yiqing Lin
机构
[1] Department of Industrial Engineering and Operations Research,
[2] Columbia University,undefined
[3] New York,undefined
[4] New York 10027,undefined
[5] e-mail: goldfarb@columbia.edu,undefined
[6] United Technologies Research Center,undefined
[7] East Hartford,undefined
[8] Connecticut 06108,undefined
[9] e-mail: liny@utrc. utc.com,undefined
来源
Mathematical Programming | 2002年 / 93卷
关键词
Input Data; Potential Function; Minimum Cost; Generalize Circulation; Interior Point;
D O I
暂无
中图分类号
学科分类号
摘要
 We present combinatorial interior point methods for the generalized minimum cost flow and the generalized circulation problems based on Wallacher and Zimmermann's combinatorial interior point method for the minimum cost network flow problem. The algorithms have features of both a combinatorial algorithm and an interior point method. They work towards optimality by iteratively reducing the value of a potential function while maintaining interior point solutions. At each iteration, flow is augmented along a generalized circulation, which is computed by solving a TVPI (Two Variables Per Inequality) system. The algorithms run in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} time, where m and n are, respectively, the number of arcs and nodes in the graph, and L is the length of the input data.
引用
收藏
页码:227 / 246
页数:19
相关论文
共 50 条
  • [21] Interior Point and Newton Methods in Solving High Dimensional Flow Distribution Problems for Pipe Networks
    Khamisov, Oleg O.
    Stennikov, Valery A.
    LEARNING AND INTELLIGENT OPTIMIZATION (LION 11 2017), 2017, 10556 : 139 - 149
  • [22] Solving scalarized multi-objective network flow problems using an interior point method
    Fonseca, Margarida
    Figueira, Jose Rui
    Resende, Mauricio G. C.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2010, 17 (05) : 607 - 636
  • [23] Application of interior point methods to power flow unsolvability
    Granville, S
    Mello, JCO
    Melo, ACG
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (02) : 1096 - 1103
  • [24] Dynamic optimal power flow by interior point methods
    Xie, K
    Song, YH
    IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 2001, 148 (01) : 76 - 84
  • [25] Newton flow and interior point methods in linear programming
    Dedieu, JP
    Shub, M
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (03): : 827 - 839
  • [26] Matrix Balancing Based Interior Point Methods for Point Set Matching Problems*
    Wijesinghe, Janith
    Chen, Pengwen
    SIAM JOURNAL ON IMAGING SCIENCES, 2023, 16 (03): : 1068 - 1105
  • [27] A generalized direction in interior point method for monotone linear complementarity problems
    Haddou, Mounir
    Migot, Tangi
    Omer, Jeremy
    OPTIMIZATION LETTERS, 2019, 13 (01) : 35 - 53
  • [28] Interior point methods for solving Pareto eigenvalue complementarity problems
    Adly, Samir
    Haddou, Mounir
    Le, Manh Hung
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (03): : 543 - 569
  • [29] Dual interior point methods for linear semidefinite programming problems
    Zhadan, V. G.
    Orlov, A. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (12) : 2031 - 2051
  • [30] Interior-point algorithms, penalty methods and equilibrium problems
    Benson, Hande Y.
    Sen, Arun
    Shanno, David F.
    Vanderbei, Robert J.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2006, 34 (02) : 155 - 182