Combinatorial interior point methods for generalized network flow problems

被引:0
|
作者
Donald Goldfarb
Yiqing Lin
机构
[1] Department of Industrial Engineering and Operations Research,
[2] Columbia University,undefined
[3] New York,undefined
[4] New York 10027,undefined
[5] e-mail: goldfarb@columbia.edu,undefined
[6] United Technologies Research Center,undefined
[7] East Hartford,undefined
[8] Connecticut 06108,undefined
[9] e-mail: liny@utrc. utc.com,undefined
来源
Mathematical Programming | 2002年 / 93卷
关键词
Input Data; Potential Function; Minimum Cost; Generalize Circulation; Interior Point;
D O I
暂无
中图分类号
学科分类号
摘要
 We present combinatorial interior point methods for the generalized minimum cost flow and the generalized circulation problems based on Wallacher and Zimmermann's combinatorial interior point method for the minimum cost network flow problem. The algorithms have features of both a combinatorial algorithm and an interior point method. They work towards optimality by iteratively reducing the value of a potential function while maintaining interior point solutions. At each iteration, flow is augmented along a generalized circulation, which is computed by solving a TVPI (Two Variables Per Inequality) system. The algorithms run in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} time, where m and n are, respectively, the number of arcs and nodes in the graph, and L is the length of the input data.
引用
收藏
页码:227 / 246
页数:19
相关论文
共 50 条
  • [31] A generalized direction in interior point method for monotone linear complementarity problems
    Mounir Haddou
    Tangi Migot
    Jérémy Omer
    Optimization Letters, 2019, 13 : 35 - 53
  • [32] Interior-Point Algorithms, Penalty Methods and Equilibrium Problems
    Hande Y. Benson
    Arun Sen
    David F. Shanno
    Robert J. Vanderbei
    Computational Optimization and Applications, 2006, 34 : 155 - 182
  • [33] A globalization strategy for Interior Point Methods for Mixed Complementarity Problems
    Bellavia, S
    Morini, B
    HIGH PERFORMANCE ALGORITHMS AND SOFTWARE FOR NONLINEAR OPTIMIZATION, 2003, 82 : 75 - 94
  • [34] Inexact interior point methods for mixed nonlinear complementarity problems
    Bellavia, S
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1999, 2A : 181 - 183
  • [35] Dual interior point methods for linear semidefinite programming problems
    V. G. Zhadan
    A. A. Orlov
    Computational Mathematics and Mathematical Physics, 2011, 51 : 2031 - 2051
  • [36] Solving Image Registration Problems Using Interior Point Methods
    Taylor, Camillo Jose
    Bhusnurmath, Arvind
    COMPUTER VISION - ECCV 2008, PT IV, PROCEEDINGS, 2008, 5305 : 638 - 651
  • [37] A Combinatorial Algorithm for Generalized Maximum Flow Problem in Lossy Network
    Dong Liwei
    Zhang Xiaofen
    Wang Hong
    INFORMATION TECHNOLOGY APPLICATIONS IN INDUSTRY, PTS 1-4, 2013, 263-266 : 2295 - 2300
  • [38] Faster Approximate Lossy Generalized Flow via Interior Point Algorithms
    Daitch, Samuel I.
    Spielman, Daniel A.
    STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 451 - 460
  • [39] Interior point methods for power flow optimization with security constraints
    Casacio, L.
    Lyra, C.
    Oliveira, A. R. L.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2019, 26 (01) : 364 - 378
  • [40] Iterative methods for generalized equilibrium problems and fixed point problems with applications
    Qin, Xiaolong
    Chang, Shih-sen
    Cho, Yeol Je
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 2963 - 2972