A generalized direction in interior point method for monotone linear complementarity problems

被引:8
|
作者
Haddou, Mounir [1 ]
Migot, Tangi [1 ]
Omer, Jeremy [1 ]
机构
[1] Univ Rennes, INSA Rennes, CNRS, IRMAR,UMR 6625, F-35000 Rennes, France
关键词
Concave functions; Interior-point methods; Linear programming; Linear complementarity problems; Polynomial time complexity; CARTESIAN PRODUCT; ALGORITHM;
D O I
10.1007/s11590-018-1241-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we present a new interior point method with full Newton step for monotone linear complementarity problems. The specificity of our method is to compute the Newton step using a modified system similar to that introduced by Darvay in Stud Univ Babe-Bolyai Ser Inform 47:15-26,2017. We prove that this new method possesses the best known upper bound complexity for these methods. Moreover, we extend results known in the literature since we consider a general family of smooth concave functions in the Newton system instead of the square root.
引用
收藏
页码:35 / 53
页数:19
相关论文
共 50 条
  • [1] A generalized direction in interior point method for monotone linear complementarity problems
    Mounir Haddou
    Tangi Migot
    Jérémy Omer
    Optimization Letters, 2019, 13 : 35 - 53
  • [2] A Polynomial Interior-Point Algorithm for Monotone Linear Complementarity Problems
    H. Mansouri
    M. Pirhaji
    Journal of Optimization Theory and Applications, 2013, 157 : 451 - 461
  • [3] A Polynomial Interior-Point Algorithm for Monotone Linear Complementarity Problems
    Mansouri, H.
    Pirhaji, M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (02) : 451 - 461
  • [4] An infeasible interior-point method with improved centering steps for monotone linear complementarity problems
    Asadi, Soodabeh
    Mansouri, Hossein
    Darvay, Zsolt
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (03)
  • [5] A Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems
    Asadi, Soodabeh
    Darvay, Zsolt
    Lesaja, Goran
    Mahdavi-Amiri, Nezam
    Potra, Florian
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 186 (03) : 864 - 878
  • [6] A Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems
    Soodabeh Asadi
    Zsolt Darvay
    Goran Lesaja
    Nezam Mahdavi-Amiri
    Florian Potra
    Journal of Optimization Theory and Applications, 2020, 186 : 864 - 878
  • [7] Interior Point Method for Solving the Horizontal Linear Complementarity Problems
    Jiang, Xingwu
    Wang, Xiuyu
    Yang, Taishan
    Liu, Qinghuai
    PROCEEDINGS OF THE 2011 INTERNATIONAL CONFERENCE ON INFORMATICS, CYBERNETICS, AND COMPUTER ENGINEERING (ICCE2011), VOL 3: COMPUTER NETWORKS AND ELECTRONIC ENGINEERING, 2011, 112 : 499 - +
  • [8] An infeasible-interior-point method for linear complementarity problems
    Simantiraki, EM
    Shanno, DF
    SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (03) : 620 - 640
  • [9] On the analyticity properties of infeasible-interior-point paths for monotone linear complementarity problems
    Josef Stoer
    Martin Wechs
    Numerische Mathematik, 1999, 81 : 631 - 645
  • [10] Path-following interior-point algorithm for monotone linear complementarity problems
    Grimes, Welid
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (09)