A generalized direction in interior point method for monotone linear complementarity problems

被引:8
|
作者
Haddou, Mounir [1 ]
Migot, Tangi [1 ]
Omer, Jeremy [1 ]
机构
[1] Univ Rennes, INSA Rennes, CNRS, IRMAR,UMR 6625, F-35000 Rennes, France
关键词
Concave functions; Interior-point methods; Linear programming; Linear complementarity problems; Polynomial time complexity; CARTESIAN PRODUCT; ALGORITHM;
D O I
10.1007/s11590-018-1241-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we present a new interior point method with full Newton step for monotone linear complementarity problems. The specificity of our method is to compute the Newton step using a modified system similar to that introduced by Darvay in Stud Univ Babe-Bolyai Ser Inform 47:15-26,2017. We prove that this new method possesses the best known upper bound complexity for these methods. Moreover, we extend results known in the literature since we consider a general family of smooth concave functions in the Newton system instead of the square root.
引用
收藏
页码:35 / 53
页数:19
相关论文
共 50 条
  • [41] Inexact non-interior continuation method for monotone semidefinite complementarity problems
    Shaoping Rui
    Chengxian Xu
    Optimization Letters, 2012, 6 : 1411 - 1424
  • [42] Inexact non-interior continuation method for monotone semidefinite complementarity problems
    Rui, Shaoping
    Xu, Chengxian
    OPTIMIZATION LETTERS, 2012, 6 (07) : 1411 - 1424
  • [43] A path following interior-point method for linear complementarity problems over circular cones
    Pirhaji, M.
    Zangiabadi, M.
    Mansouri, H.
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 35 (03) : 1103 - 1121
  • [44] A path following interior-point method for linear complementarity problems over circular cones
    M. Pirhaji
    M. Zangiabadi
    H. Mansouri
    Japan Journal of Industrial and Applied Mathematics, 2018, 35 : 1103 - 1121
  • [45] INFEASIBLE FULL NEWTON-STEP INTERIOR-POINT METHOD FOR LINEAR COMPLEMENTARITY PROBLEMS
    Lesaja, Goran
    Drummer, A.
    Miletic, Ljiljana
    CROATIAN OPERATIONAL RESEARCH REVIEW, 2012, 3 (01) : 163 - 175
  • [46] A combined homotopy interior point method for the linear complementarity problem
    Zhao, Xue
    Zhang, Shugong
    Liu, Qinghuai
    Journal of Information and Computational Science, 2010, 7 (07): : 1589 - 1594
  • [47] A combined homotopy interior point method for the linear complementarity problem
    Yu, Qian
    Huang, Chongchao
    Wang, Xianjia
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 179 (02) : 696 - 701
  • [48] AN INFEASIBLE-INTERIOR-POINT ALGORITHM FOR LINEAR COMPLEMENTARITY-PROBLEMS
    WRIGHT, SJ
    MATHEMATICAL PROGRAMMING, 1994, 67 (01) : 29 - 51
  • [49] A self-adjusting interior point algorithm for linear complementarity problems
    He, SY
    Li, XS
    Pan, SH
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (1-2) : 33 - 40
  • [50] IMPROVED INFEASIBLE-INTERIOR-POINT ALGORITHM FOR LINEAR COMPLEMENTARITY PROBLEMS
    Zangiabadi, M.
    Mansouri, H.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (03) : 787 - 803