Conservative Fourier spectral scheme for the coupled Schrödinger–Boussinesq equations

被引:0
|
作者
Junjie Wang
机构
[1] Pu’er University,School of Mathematics and Statistical
关键词
Schrödinger–Boussinesq equations; Conservative Fourier spectral method; Conservation laws; Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, the conservative Fourier spectral scheme is presented for the coupled Schrödinger–Boussinesq equations. We apply the Fourier collocation scheme to spatial derivatives and the Crank–Nicolson scheme to the system in time direction, respectively. We find that the scheme can preserve mass and energy conservation laws. Moreover, the existence, uniqueness, stability and convergence of the scheme are discussed, and it is shown that the scheme is of the accuracy O(τ2+J−r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\tau^{2}+J^{-r})$\end{document}. The numerical experiments are given to show that verify the correctness of theoretical results and the efficiency of the scheme.
引用
收藏
相关论文
共 50 条
  • [21] Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrödinger equations
    LingHua Kong
    Lan Wang
    ShanShan Jiang
    YaLi Duan
    [J]. Science China Mathematics, 2013, 56 : 915 - 932
  • [22] Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrdinger equations
    KONG LingHua
    WANG Lan
    JIANG ShanShan
    DUAN YaLi
    [J]. Science China Mathematics, 2013, 56 (05) : 916 - 933
  • [23] Parallel Split-Step Fourier Methods for the Coupled Nonlinear Schrödinger Type Equations
    Thiab R. Taha
    Xiangming Xu
    [J]. The Journal of Supercomputing, 2005, 32 : 5 - 23
  • [24] Double Traveling Wave Solutions of the Coupled Nonlinear Klein-Gordon Equations and the Coupled Schrdinger-Boussinesq Equation
    Lanfang SHI
    Ziwen NIE
    [J]. Journal of Mathematical Research with Applications, 2017, 37 (06) : 679 - 696
  • [25] Structure-preserving BDF2 FE method for the coupled Schrödinger-Boussinesq equations
    Yining Yang
    Ziyu Sun
    Yang Liu
    Hong Li
    [J]. Numerical Algorithms, 2023, 93 : 1243 - 1267
  • [26] Standing Waves of the Coupled Nonlinear Schrdinger Equations
    Linlin Yang
    Gongming Wei
    [J]. Analysis in Theory and Applications, 2014, 30 (04) : 345 - 353
  • [27] Dynamics of degenerate and nondegenerate solitons in the two-component nonlinear Schrödinger equations coupled to Boussinesq equation
    Xiang Chen
    Dumitru Mihalache
    Jiguang Rao
    [J]. Nonlinear Dynamics, 2023, 111 : 697 - 711
  • [28] A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems
    A. H. Bhrawy
    E. H. Doha
    S. S. Ezz-Eldien
    Robert A. Van Gorder
    [J]. The European Physical Journal Plus, 129
  • [29] Capturing of solitons collisions and reflections in nonlinear Schrödinger type equations by a conservative scheme based on MOL
    Mohamed M. Mousa
    Praveen Agarwal
    Fahad Alsharari
    Shaher Momani
    [J]. Advances in Difference Equations, 2021
  • [30] Coupled nonlinear Schrödinger equations with harmonic potential
    Hezzi H.
    Nour M.M.
    Saanouni T.
    [J]. Arabian Journal of Mathematics, 2018, 7 (3) : 195 - 218