Conservative Fourier spectral scheme for the coupled Schrödinger–Boussinesq equations

被引:0
|
作者
Junjie Wang
机构
[1] Pu’er University,School of Mathematics and Statistical
关键词
Schrödinger–Boussinesq equations; Conservative Fourier spectral method; Conservation laws; Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, the conservative Fourier spectral scheme is presented for the coupled Schrödinger–Boussinesq equations. We apply the Fourier collocation scheme to spatial derivatives and the Crank–Nicolson scheme to the system in time direction, respectively. We find that the scheme can preserve mass and energy conservation laws. Moreover, the existence, uniqueness, stability and convergence of the scheme are discussed, and it is shown that the scheme is of the accuracy O(τ2+J−r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\tau^{2}+J^{-r})$\end{document}. The numerical experiments are given to show that verify the correctness of theoretical results and the efficiency of the scheme.
引用
收藏
相关论文
共 50 条
  • [41] Non-conservative variational approximation for nonlinear Schrödinger equations
    J. Rossi
    R. Carretero-González
    P. G. Kevrekidis
    [J]. The European Physical Journal Plus, 135
  • [42] Convergence of a numerical scheme for a coupled Schrödinger–KdV system
    Paulo Amorim
    Mário Figueira
    [J]. Revista Matemática Complutense, 2013, 26 : 409 - 426
  • [43] Numerical analysis of a conservative linear compact difference scheme for the coupled Schrodinger-Boussinesq equations
    Liao, Feng
    Zhang, Luming
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (05) : 961 - 978
  • [44] A spectral method for Schrödinger equations with smooth confinement potentials
    Jerry Gagelman
    Harry Yserentant
    [J]. Numerische Mathematik, 2012, 122 : 383 - 398
  • [45] Global Attractor for a Class of Coupled Nonlinear Schrödinger Equations
    Li G.
    Zhu C.
    [J]. SeMA Journal, 2012, 60 (1) : 5 - 25
  • [46] Coupled linear Schrödinger equations: control and stabilization results
    Bhandari, K.
    Capistrano-Filho, R. de A.
    Majumdar, S.
    Tanaka, T. Y.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):
  • [47] Numerical approximation of solution for the coupled nonlinear Schrödinger equations
    Juan Chen
    Lu-ming Zhang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 435 - 450
  • [48] Standing waves for a coupled system of nonlinear Schrödinger equations
    Zhijie Chen
    Wenming Zou
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 183 - 220
  • [49] Numerical Approximation of Solution for the Coupled Nonlinear Schr?dinger Equations
    Juan CHEN
    Lu-ming ZHANG
    [J]. Acta Mathematicae Applicatae Sinica, 2017, 33 (02) : 435 - 450
  • [50] Periodic wavetrains for systems of coupled nonlinear Schrödinger equations
    Kwok W Chow
    Derek WC Lai
    [J]. Pramana, 2001, 57 : 937 - 952