Exploring the geometry of the bifurcation sets in parameter space

被引:0
|
作者
Barrio, Roberto [1 ,2 ]
Ibanez, Santiago [3 ]
Perez, Lucia [3 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Zaragoza 50009, Spain
[2] Univ Zaragoza, IUMA, Computat Dynam Grp, Zaragoza 50009, Spain
[3] Univ Oviedo, Dept Matemat, Oviedo 33007, Spain
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
FITZHUGH-NAGUMO EQUATION; HOMOCLINIC ORBITS; MODEL; HOPF;
D O I
10.1038/s41598-024-61574-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
By studying a nonlinear model by inspecting a p-dimensional parameter space through ( p - 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document} -dimensional cuts, one can detect changes that are only determined by the geometry of the manifolds that make up the bifurcation set. We refer to these changes as geometric bifurcations. They can be understood within the framework of the theory of singularities for differentiable mappings and, in particular, of the Morse Theory. Working with a three-dimensional parameter space, geometric bifurcations are illustrated in two models of neuron activity: the Hindmarsh-Rose and the FitzHugh-Nagumo systems. Both are fast-slow systems with a small parameter that controls the time scale of a slow variable. Geometric bifurcations are observed on slices corresponding to fixed values of this distinguished small parameter, but they should be of interest to anyone studying bifurcation diagrams in the context of nonlinear phenomena.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [1] On the Analysis of the Bifurcation Sets of Equilibrium Points in Parameter Space
    Chesi, G.
    Tanaka, G.
    Hirata, Y.
    Aihara, K.
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 670 - 675
  • [2] Exploring the Geometry of the Space of Shells
    Heeren, B.
    Rumpf, M.
    Schroeder, P.
    Wardetzky, M.
    Wirth, B.
    COMPUTER GRAPHICS FORUM, 2014, 33 (05) : 247 - 256
  • [3] Analytical search for bifurcation surfaces in parameter space
    Gross, T
    Feudel, U
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (3-4) : 292 - 302
  • [4] Geometry of bifurcation sets of generic unfoldings of corank two functions
    Saji, Kentaro
    dos Santos, Samuel Paulino
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (03): : 553 - 575
  • [5] Geometry of bifurcation sets of generic unfoldings of corank two functions
    Kentaro Saji
    Samuel Paulino dos Santos
    Monatshefte für Mathematik, 2021, 196 : 553 - 575
  • [6] Exploring the parameter space of stimulus rivalry
    van Boxtel, J. J. A.
    Knapen, T.
    van Ee, R.
    Erkelens, C. J.
    PERCEPTION, 2006, 35 : 32 - 32
  • [7] Exploring the parameter state space of stacking
    Seewald, AK
    2002 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2002, : 685 - 688
  • [8] Exploring the superimposed oscillations parameter space
    Martin, J
    Ringeval, C
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2005, (01): : 85 - 98
  • [9] COMPUTING A CLOSEST BIFURCATION INSTABILITY IN MULTIDIMENSIONAL PARAMETER SPACE
    DOBSON, I
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (03) : 307 - 327
  • [10] The geometry of a parameter space of interacting particle systems
    Bandt, C
    JOURNAL OF STATISTICAL PHYSICS, 1999, 96 (3-4) : 883 - 906