Exploring the Geometry of the Space of Shells

被引:35
|
作者
Heeren, B. [1 ]
Rumpf, M. [1 ]
Schroeder, P. [2 ]
Wardetzky, M. [3 ]
Wirth, B. [4 ]
机构
[1] Univ Bonn, Inst Numer Simulat, Bonn, Germany
[2] CALTECH, Pasadena, CA 91125 USA
[3] Univ Gottingen, Inst Num & Appl Math, Gottingen, Germany
[4] Univ Munster, Inst Computat & Appl Math, Munster, Germany
关键词
SHAPE; GEODESICS;
D O I
10.1111/cgf.12450
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We prove both in the smooth and discrete setting that the Hessian of an elastic deformation energy results in a proper Riemannian metric on the space of shells (modulo rigid body motions). Based on this foundation we develop a time-and space-discrete geodesic calculus. In particular we show how to shoot geodesics with prescribed initial data, and we give a construction for parallel transport in shell space. This enables, for example, natural extrapolation of paths in shell space and transfer of large nonlinear deformations from one shell to another with applications in animation, geometric, and physical modeling. Finally, we examine some aspects of curvature on shell space.
引用
收藏
页码:247 / 256
页数:10
相关论文
共 50 条
  • [1] Exploring the geometry of the bifurcation sets in parameter space
    Barrio, Roberto
    Ibanez, Santiago
    Perez, Lucia
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] Exploring the geometry and material space in gear design
    Kulkarni, Nagesh
    Gautham, B. P.
    Zagade, Pramod
    Panchal, Jitesh
    Allen, Janet K.
    Mistree, Farrokh
    ENGINEERING OPTIMIZATION, 2015, 47 (04) : 561 - 577
  • [3] Shape in an atom of space: exploring quantum geometry phenomenology
    Major, Seth A.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (22)
  • [4] Exploring geometry of genome space via Grassmann manifolds
    Li, Xiaoguang
    Zhou, Tao
    Feng, Xingdong
    Yau, Shing-Tung
    Yau, Stephen S. -T.
    INNOVATION, 2024, 5 (05):
  • [5] EXPLORING THE SOLUTION SPACE OF LINEAR INVERSE PROBLEMS WITH GAN LATENT GEOMETRY
    Montanaro, Antonio
    Valsesia, Diego
    Magli, Enrico
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1381 - 1385
  • [6] CONICAL SHELLS WITH DISCONTINUITIES IN GEOMETRY
    HARINTHO, H
    LOGAN, DL
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1988, 114 (01): : 231 - 240
  • [7] Geometry of crossing null shells
    Jezierski, J
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (02) : 641 - 661
  • [8] Exploring the geometry of qutrit state space using symmetric informationally complete probabilities
    Tabia, Gelo Noel M.
    Appleby, D. M.
    PHYSICAL REVIEW A, 2013, 88 (01):
  • [9] Splines in the Space of Shells
    Heeren, Behrend
    Rumpf, Martin
    Schroder, Peter
    Wardetzky, Max
    Wirth, Benedikt
    COMPUTER GRAPHICS FORUM, 2016, 35 (05) : 111 - 120
  • [10] The bio-geometry of mollusc shells
    Rice, SH
    PALEOBIOLOGY, 1998, 24 (01) : 133 - 149