On zeroth-order general Randić index of conjugated unicyclic graphs

被引:0
|
作者
Hongbo Hua
Maolin Wang
Hongzhuan Wang
机构
[1] Huaiyin Institute of Technology,Department of Computing Science
来源
关键词
conjugated tree; conjugated unicyclic graph; zeroth-order general Randić index;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph and dv denote the degree of the vertex v in G. The zeroth-order general Randić index of a graph is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\alpha}^0(G)=\sum_{v\in V(G)}{d_{v}}^{\alpha}$$\end{document} where α is an arbitrary real number. In this paper, we investigate the zeroth-order general Randić index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\alpha}^0(G)$$\end{document} of conjugated unicyclic graphs G (i.e., unicyclic graphs with a perfect matching) and sharp lower and upper bounds are obtained for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\alpha}^0(G)$$\end{document} depending on α in different intervals.
引用
收藏
页码:737 / 748
页数:11
相关论文
共 50 条
  • [31] ZEROTH-ORDER GENERAL RANDIC INDEX OF LINE GRAPHS OF SOME CHEMICAL STRUCTURES IN DRUGS
    Mehak, Gul E.
    Bhatti, Akhlaq Ahmad
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES B-CHEMISTRY AND MATERIALS SCIENCE, 2019, 81 (01): : 47 - 70
  • [32] Some Inequalities for General Zeroth-Order Randic Index
    Milosevic, Predrag
    Milovanovic, Igor
    Milovanovic, Emina
    Matejic, Marjan
    FILOMAT, 2019, 33 (16) : 5249 - 5258
  • [33] Some Bounds on Zeroth-Order General Randic Index
    Jamil, Muhammad Kamran
    Tomescu, Ioan
    Imran, Muhammad
    Javed, Aisha
    MATHEMATICS, 2020, 8 (01)
  • [34] More on "Connected (n, m)-graphs with minimum and maximum zeroth-order general Randic index"
    Pavlovic, Ljiljana
    Lazic, Mirjana
    Aleksic, Tatjana
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (13) : 2938 - 2944
  • [35] Sharp bounds of the zeroth-order general Randic index of bicyclic graphs with given pendent vertices
    Pan, Xiang-Feng
    Lv, Ning-Ning
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (04) : 240 - 245
  • [36] (n, m)-Graphs with Maximum Zeroth-Order General Randic Index for α ∈ (-1,0)
    Li, Xueliang
    Shi, Yongtang
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 62 (01) : 163 - 170
  • [37] Sufficient conditions on the zeroth-order general Randic index for maximally edge-connected graphs
    Chen, Zhibing
    Su, Guifu
    Volkmann, Lutz
    DISCRETE APPLIED MATHEMATICS, 2017, 218 : 64 - 70
  • [38] On unicycle graphs with maximum and minimum zeroth-order genenal randic index
    Hua, Hongbo
    Deng, Hanyuan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2007, 41 (02) : 173 - 181
  • [39] On the Bounds of Zeroth-Order General RandicIndex
    Matejic, Marjan
    Altindag, Erife Burcu Bozkurt
    Milovanovic, Emina
    Milovanovic, Igor
    FILOMAT, 2022, 36 (18) : 6443 - 6456
  • [40] The general zeroth-order Randic index of maximal outerplanar graphs and trees with k maximum degree vertices
    Su, Guifu
    Meng, Minghui
    Cui, Lihong
    Chen, Zhibing
    Xu, Lan
    SCIENCEASIA, 2017, 43 (06): : 387 - 393