The general zeroth-order Randic index of maximal outerplanar graphs and trees with k maximum degree vertices

被引:6
|
作者
Su, Guifu [1 ]
Meng, Minghui [1 ]
Cui, Lihong [1 ]
Chen, Zhibing [2 ]
Xu, Lan [3 ]
机构
[1] Beijing Univ Chem Technol, Sch Sci, Beijing 100029, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Guangdong, Peoples R China
[3] Changji Univ, Dept Math, Changji 831100, Peoples R China
来源
SCIENCEASIA | 2017年 / 43卷 / 06期
关键词
graph invariant; extremal graphs; 1ST; 3; SMALLEST; EDGE-CONNECTED GRAPHS; ZAGREB INDEXES; TOPOLOGICAL INDEXES; NUMBER; M)-GRAPHS; MINIMUM; VALUES; (N;
D O I
10.2306/scienceasia1513-1874.2017.43.387
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For a graph, the general zeroth-order Randic index R-alpha(0) is defined as the sum of the alpha th power of the vertex degrees (alpha not equal 0, alpha not equal 1). Let H-n be the class of all maximal outerplanar graphs on n vertices, and T-n,T-k be the class of trees with n vertices of which k vertices have the maximum degree. We first present a lower bound (respectively, upper bound) for the general zeroth-order Randic index of graphs in H-n (respectively, T-n,T-k) when alpha is an element of(-infinity, 0) boolean OR (1, + infinity) (respectively, alpha is an element of (2, + infinity)), and characterize the extremal graphs. Then we determine graphs of the class T-n,T-k with maximal and minimal general zeroth-order Randic index when alpha is an element of(-infinity, 0) boolean OR (1, + infinity), respectively.
引用
收藏
页码:387 / 393
页数:7
相关论文
共 50 条