The general zeroth-order Randic index of maximal outerplanar graphs and trees with k maximum degree vertices

被引:6
|
作者
Su, Guifu [1 ]
Meng, Minghui [1 ]
Cui, Lihong [1 ]
Chen, Zhibing [2 ]
Xu, Lan [3 ]
机构
[1] Beijing Univ Chem Technol, Sch Sci, Beijing 100029, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Guangdong, Peoples R China
[3] Changji Univ, Dept Math, Changji 831100, Peoples R China
来源
SCIENCEASIA | 2017年 / 43卷 / 06期
关键词
graph invariant; extremal graphs; 1ST; 3; SMALLEST; EDGE-CONNECTED GRAPHS; ZAGREB INDEXES; TOPOLOGICAL INDEXES; NUMBER; M)-GRAPHS; MINIMUM; VALUES; (N;
D O I
10.2306/scienceasia1513-1874.2017.43.387
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For a graph, the general zeroth-order Randic index R-alpha(0) is defined as the sum of the alpha th power of the vertex degrees (alpha not equal 0, alpha not equal 1). Let H-n be the class of all maximal outerplanar graphs on n vertices, and T-n,T-k be the class of trees with n vertices of which k vertices have the maximum degree. We first present a lower bound (respectively, upper bound) for the general zeroth-order Randic index of graphs in H-n (respectively, T-n,T-k) when alpha is an element of(-infinity, 0) boolean OR (1, + infinity) (respectively, alpha is an element of (2, + infinity)), and characterize the extremal graphs. Then we determine graphs of the class T-n,T-k with maximal and minimal general zeroth-order Randic index when alpha is an element of(-infinity, 0) boolean OR (1, + infinity), respectively.
引用
收藏
页码:387 / 393
页数:7
相关论文
共 50 条
  • [41] Super-Edge-Connectivity and Zeroth-Order Randic Index
    He, Zhi-Hong
    Lu, Mei
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2019, 7 (04) : 615 - 628
  • [42] SUPER EDGE-CONNECTIVITY AND ZEROTH-ORDER RANDIC INDEX
    He, Zhihong
    Lu, Mei
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (04) : 971 - 984
  • [43] On the zeroth-order general Randić index
    Minjie Zhang
    Shuchao Li
    Journal of Mathematical Chemistry, 2011, 49 : 325 - 327
  • [44] Trees with maximum general Randic index
    Hu, YM
    Li, XL
    Yuan, Y
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2004, (52) : 129 - 146
  • [45] Comparison between the zeroth-order Randic index and the sum-connectivity index
    Das, Kinkar Ch.
    Dehmer, Matthias
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 : 585 - 589
  • [46] Some Remarks on the General Zeroth-Order Randic acute accent Coindex
    Matejic, Marjan
    Milovanovic, Igor
    Milovanovic, Emina
    FILOMAT, 2022, 36 (06) : 2083 - 2090
  • [47] Energy, Randic Index and Maximum Degree of Graphs
    Yan, Zimo
    Liu, Chang
    Pan, Yingui
    Li, Jianping
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2021, 86 (03) : 539 - 542
  • [48] General sum-connectivity index and general Randic index of trees with given maximum degree
    Swartz, Elize
    Vetrik, Tomas
    DISCRETE MATHEMATICS LETTERS, 2023, 12 : 181 - 188
  • [49] On the general zeroth-order Randie index of bargraphs
    Elumalai, Suresh
    Mansour, Toufik
    DISCRETE MATHEMATICS LETTERS, 2019, 2 : 6 - 9
  • [50] Maximally edge-connected graphs and Zeroth-order general RandiA‡ index for
    Su, Guifu
    Xiong, Liming
    Su, Xiaofeng
    Li, Guojun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (01) : 182 - 195