The general zeroth-order Randic index of maximal outerplanar graphs and trees with k maximum degree vertices

被引:6
|
作者
Su, Guifu [1 ]
Meng, Minghui [1 ]
Cui, Lihong [1 ]
Chen, Zhibing [2 ]
Xu, Lan [3 ]
机构
[1] Beijing Univ Chem Technol, Sch Sci, Beijing 100029, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Guangdong, Peoples R China
[3] Changji Univ, Dept Math, Changji 831100, Peoples R China
来源
SCIENCEASIA | 2017年 / 43卷 / 06期
关键词
graph invariant; extremal graphs; 1ST; 3; SMALLEST; EDGE-CONNECTED GRAPHS; ZAGREB INDEXES; TOPOLOGICAL INDEXES; NUMBER; M)-GRAPHS; MINIMUM; VALUES; (N;
D O I
10.2306/scienceasia1513-1874.2017.43.387
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For a graph, the general zeroth-order Randic index R-alpha(0) is defined as the sum of the alpha th power of the vertex degrees (alpha not equal 0, alpha not equal 1). Let H-n be the class of all maximal outerplanar graphs on n vertices, and T-n,T-k be the class of trees with n vertices of which k vertices have the maximum degree. We first present a lower bound (respectively, upper bound) for the general zeroth-order Randic index of graphs in H-n (respectively, T-n,T-k) when alpha is an element of(-infinity, 0) boolean OR (1, + infinity) (respectively, alpha is an element of (2, + infinity)), and characterize the extremal graphs. Then we determine graphs of the class T-n,T-k with maximal and minimal general zeroth-order Randic index when alpha is an element of(-infinity, 0) boolean OR (1, + infinity), respectively.
引用
收藏
页码:387 / 393
页数:7
相关论文
共 50 条
  • [31] Conjugated tricyclic graphs with the maximum zeroth-order general Randić index
    Xiang-Feng Pan
    Su-Qin Liu
    Journal of Applied Mathematics and Computing, 2012, 39 (1-2) : 511 - 521
  • [32] Sufficient conditions on the zeroth-order general Randic index for maximally edge-connected graphs
    Chen, Zhibing
    Su, Guifu
    Volkmann, Lutz
    DISCRETE APPLIED MATHEMATICS, 2017, 218 : 64 - 70
  • [33] A Note on the Zeroth-Order General Randic Index of Cacti and Polyomino Chains
    Ali, Akbar
    Bhatti, Akhlaq Ahmad
    Raza, Zahid
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 5 (02): : 143 - 152
  • [34] Sharp bounds on the zeroth-order general Randic indices of conjugated bicyclic graphs
    Li, Shuchao
    Zhang, Minjie
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (9-10) : 1990 - 2004
  • [35] Maximum Randic index on trees with k-pendant vertices
    Zhang, Lian-Zhu
    Lu, Mei
    Tian, Feng
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2007, 41 (02) : 161 - 171
  • [36] Maximum Randic Index on Unicyclic Graphs with k Pendant Vertices
    Li, Fan
    Lu, Mei
    ARS COMBINATORIA, 2014, 116 : 385 - 394
  • [37] Maximally edge-connected graphs and Zeroth-order general Randic index for 0 < α < 1
    Su, Guifu
    Xiong, Liming
    Su, Xiaofeng
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 261 - 268
  • [38] On zeroth-order general Randić index of conjugated unicyclic graphs
    Hongbo Hua
    Maolin Wang
    Hongzhuan Wang
    Journal of Mathematical Chemistry, 2008, 43 : 737 - 748
  • [39] Bounds on the general Randic index of trees with a given maximum degree
    Liu, Huiqing
    Yan, Xun
    Yan, Zheng
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2007, 58 (01) : 155 - 166
  • [40] On Unicycle Graphs with Maximum and Minimum Zeroth-order Genenal Randić Index
    Hongbo Hua
    Hanyuan Deng
    Journal of Mathematical Chemistry, 2007, 41 : 173 - 181