On zeroth-order general Randić index of conjugated unicyclic graphs

被引:0
|
作者
Hongbo Hua
Maolin Wang
Hongzhuan Wang
机构
[1] Huaiyin Institute of Technology,Department of Computing Science
来源
关键词
conjugated tree; conjugated unicyclic graph; zeroth-order general Randić index;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph and dv denote the degree of the vertex v in G. The zeroth-order general Randić index of a graph is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\alpha}^0(G)=\sum_{v\in V(G)}{d_{v}}^{\alpha}$$\end{document} where α is an arbitrary real number. In this paper, we investigate the zeroth-order general Randić index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\alpha}^0(G)$$\end{document} of conjugated unicyclic graphs G (i.e., unicyclic graphs with a perfect matching) and sharp lower and upper bounds are obtained for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\alpha}^0(G)$$\end{document} depending on α in different intervals.
引用
收藏
页码:737 / 748
页数:11
相关论文
共 50 条