Study of a Solar-Blind Photodetector Based on an IZTO/β-Ga2O3/ITO Schottky Diode

被引:0
|
作者
Rima Cherroun
Afak Meftah
Madani Labed
Nouredine Sengouga
Amjad Meftah
Hojoong Kim
You Seung Rim
机构
[1] University of Biskra,Laboratory of Semiconducting and Metallic Materials (LMSM)
[2] Sejong University,Department of Intelligent Mechatronics Engineering and Convergence Engineering for Intelligent Drone
来源
关键词
IZTO/β-Ga; O; solar-blind photodetector; persistent photoconductivity; passivation; simulation; traps;
D O I
暂无
中图分类号
学科分类号
摘要
An InZnSnO2 (IZTO)/β-Ga2O3 solar blind Schottky barrier diode photodetector (PhD) exposed to 255 nm, 385 nm and 500 nm light wavelengths was simulated and compared with measurement. The measured dark photocurrent at reverse bias and responsivity were successfully reproduced by numerical simulation by considering several factors such as conduction mechanisms and material parameters. Further optimizations based on reducing trap densities and insertion of a 50-nm Al0.39Ga0.612O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left({\mathrm{Al}}_{0.39}{\mathrm{Ga}}_{0.61}\right)}_{2}{\mathrm{O}}_{3}$$\end{document} passivation layer between IZTO and β-Ga2O3 are carried out. The effect of reducing bulk traps densities on the photocurrent, responsivity and time-dependent photoresponse (persistent conductivity) were studied. With decreasing traps densities, the photocurrent increased. Responsivity reached 0.04 A/W for low β-Ga2O3 trap densities. The decay time estimated for the lowest ET(0.74,1.04eV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{{T}}\; (0.74, 1.04\; \mathrm{eV})$$\end{document} densities is ∼0.05s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 0.05\; \mathrm{s}$$\end{document} and is shorter at ∼0.015s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 0.015\; \mathrm{s}$$\end{document} for ET(0.55eV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{{T}}\; (0.55\; \mathrm{eV})$$\end{document}. This indicates that the shallowest traps had the dominant influence (ET=0.55eV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{{T}}=0.55\; \mathrm{eV}$$\end{document}) on the persistent photoconductivity phenomenon. Furthermore, with decreasing trap densities, this PhD can be considered as a self-powered solar-blind photodiode (SBPhD). The insertion of a Al0.39Ga0.612O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left({\mathrm{Al}}_{0.39}{\mathrm{Ga}}_{0.61}\right)}_{2}{\mathrm{O}}_{3}$$\end{document} passivation layer increases the photocurrent which is related to a recombination decrease and the photogenerated carrier increase, and hence the increase of the internal quantum efficiency.
引用
收藏
页码:1448 / 1460
页数:12
相关论文
共 50 条
  • [11] Schottky β-Ga2O3 Solar-Blind UV Photodetectors
    Yang L.-H.
    Zhang B.-H.
    Guo F.-Q.
    Chen D.-J.
    Zhang, Bao-Hua (zbhcjxy@163.com), 1600, Chinese Institute of Electronics (48): : 1240 - 1243
  • [12] Capacitive β-Ga2O3 solar-blind photodetector with graphene electrode
    Kim, Ayeong
    Lee, Geonyeop
    Kim, Jihyun
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2021, 39 (05):
  • [13] Growth of Ga2O3 Nanowires and the Fabrication of Solar-Blind Photodetector
    Weng, W. Y.
    Hsueh, T. J.
    Chang, Shoou-Jinn
    Huang, G. J.
    Hung, S. C.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2011, 10 (05) : 1047 - 1052
  • [14] Ultrasensitive Flexible κ-Phase Ga2O3 Solar-Blind Photodetector
    Tang, Xiao
    Lu, Yi
    Krishna, Shibin
    Babatain, Wedyan
    Ben Hassine, Mohamed
    Liao, Che-Hao
    Xiao, Na
    Liu, Zhiyuan
    Li, Xiaohang
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (30) : 34844 - 34854
  • [15] Dual-Channel Solar-Blind UV Photodetector Based on β-Ga2O3
    Luchechko, Andriy
    Vasyltsiv, Vyacheslav
    Kostyk, Lyudmyla
    Pavlyk, Bohdan
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2019, 216 (22):
  • [16] Physical Operations of a Self-Powered IZTO/β-Ga2O3 Schottky Barrier Diode Photodetector
    Labed, Madani
    Kim, Hojoong
    Park, Joon Hui
    Labed, Mohamed
    Meftah, Afak
    Sengouga, Nouredine
    Rim, You Seung
    NANOMATERIALS, 2022, 12 (07)
  • [17] Solar-blind photodetectors based on MXenes-β-Ga2O3 Schottky junctions
    Chen, Yancheng
    Zhang, Kuikui
    Yang, Xun
    Chen, Xuexia
    Sun, Junlu
    Zhao, Qi
    Li, Kaiyong
    Shan, Chongxin
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (48)
  • [18] Review of polymorphous Ga2O3 materials and their solar-blind photodetector applications
    Hou, Xiaohu
    Zou, Yanni
    Ding, Mengfan
    Qin, Yuan
    Zhang, Zhongfang
    Ma, Xiaolan
    Tan, Pengju
    Yu, Shunjie
    Zhou, Xuanzhe
    Zhao, Xiaolong
    Xu, Guangwei
    Sun, Haiding
    Lon, Shibing
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (04)
  • [19] The performance of Al plasmon enhanced ß-Ga2O3 solar-blind photodetector
    Yu JianGang
    Li Qiang
    Yao HuiZhen
    Li XiuYuan
    Yu Miao
    Jia Renxu
    Zhang LiChun
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2022, 52 (09)
  • [20] Self-Driven Solar-Blind Photodetector Based on ε-Ga2O3/SiC Heterojunction
    Wang Y.
    Zhang Q.
    Shen J.
    Gan M.
    Wu Z.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2022, 45 (03): : 44 - 49