Study of a Solar-Blind Photodetector Based on an IZTO/β-Ga2O3/ITO Schottky Diode

被引:0
|
作者
Rima Cherroun
Afak Meftah
Madani Labed
Nouredine Sengouga
Amjad Meftah
Hojoong Kim
You Seung Rim
机构
[1] University of Biskra,Laboratory of Semiconducting and Metallic Materials (LMSM)
[2] Sejong University,Department of Intelligent Mechatronics Engineering and Convergence Engineering for Intelligent Drone
来源
关键词
IZTO/β-Ga; O; solar-blind photodetector; persistent photoconductivity; passivation; simulation; traps;
D O I
暂无
中图分类号
学科分类号
摘要
An InZnSnO2 (IZTO)/β-Ga2O3 solar blind Schottky barrier diode photodetector (PhD) exposed to 255 nm, 385 nm and 500 nm light wavelengths was simulated and compared with measurement. The measured dark photocurrent at reverse bias and responsivity were successfully reproduced by numerical simulation by considering several factors such as conduction mechanisms and material parameters. Further optimizations based on reducing trap densities and insertion of a 50-nm Al0.39Ga0.612O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left({\mathrm{Al}}_{0.39}{\mathrm{Ga}}_{0.61}\right)}_{2}{\mathrm{O}}_{3}$$\end{document} passivation layer between IZTO and β-Ga2O3 are carried out. The effect of reducing bulk traps densities on the photocurrent, responsivity and time-dependent photoresponse (persistent conductivity) were studied. With decreasing traps densities, the photocurrent increased. Responsivity reached 0.04 A/W for low β-Ga2O3 trap densities. The decay time estimated for the lowest ET(0.74,1.04eV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{{T}}\; (0.74, 1.04\; \mathrm{eV})$$\end{document} densities is ∼0.05s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 0.05\; \mathrm{s}$$\end{document} and is shorter at ∼0.015s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 0.015\; \mathrm{s}$$\end{document} for ET(0.55eV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{{T}}\; (0.55\; \mathrm{eV})$$\end{document}. This indicates that the shallowest traps had the dominant influence (ET=0.55eV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{{T}}=0.55\; \mathrm{eV}$$\end{document}) on the persistent photoconductivity phenomenon. Furthermore, with decreasing trap densities, this PhD can be considered as a self-powered solar-blind photodiode (SBPhD). The insertion of a Al0.39Ga0.612O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left({\mathrm{Al}}_{0.39}{\mathrm{Ga}}_{0.61}\right)}_{2}{\mathrm{O}}_{3}$$\end{document} passivation layer increases the photocurrent which is related to a recombination decrease and the photogenerated carrier increase, and hence the increase of the internal quantum efficiency.
引用
收藏
页码:1448 / 1460
页数:12
相关论文
共 50 条
  • [21] Arrays of Solar-Blind Ultraviolet Photodetector Based on β-Ga2O3 Epitaxial Thin Films
    Peng, Yangke
    Zhang, Yan
    Chen, Zhengwei
    Guo, Daoyou
    Zhang, Xiao
    Li, Peigang
    Wu, Zhenping
    Tang, Weihua
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (11) : 993 - 996
  • [22] An enhanced ultrasensitive solar-blind UV photodetector based on an asymmetric Schottky junction designed with graphene/β-Ga2O3/Ag
    Qi, Song
    Liu, Jiahang
    Yue, Jianying
    Ji, Xueqiang
    Shen, Jiaying
    Yang, Yongtao
    Wang, Jinjin
    Li, Shan
    Wu, Zhenping
    Tang, Weihua
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (25) : 8454 - 8461
  • [23] High-Sensitivity Solar-Blind Photodetector Based on -Ga2O3 Schottky Junction Under Forward and Reverse Bias
    Fu, Shihao
    Wang, Yuefei
    Gao, Chong
    Han, Yurui
    Fu, Rongpeng
    Wang, Longpu
    Li, Bingsheng
    Ma, Jiangang
    Fu, Zhendong
    Xu, Haiyang
    Liu, Yichun
    IEEE ELECTRON DEVICE LETTERS, 2023, 44 (09) : 1428 - 1431
  • [24] Solar-Blind Ultraviolet Anisotropic Polarization Detection by β-Ga2O3 Based Schottky Photodiodes
    Long, Haoran
    Xiong, Tao
    Hu, Jianwen
    He, Kexin
    Liu, Yueyang
    Yang, Juehan
    Wei, Zhongming
    IEEE ELECTRON DEVICE LETTERS, 2024, 45 (07) : 1153 - 1156
  • [25] Solar-blind ultraviolet photodetector based on Nb2C/β-Ga2O3 heterojunction
    Zhang, Yongfeng
    Liu, Shuainan
    Xu, Ruiliang
    Ruan, Shengping
    Liu, Caixia
    Ma, Yan
    Li, Xin
    Chen, Yu
    Zhou, Jingran
    NANOTECHNOLOGY, 2024, 35 (16)
  • [26] Influence of titanium adhesion layer on performance of β-Ga2O3 solar-blind photodetector
    Vu, Thi Kim Oanh
    Lee, Dong Uk
    Kim, Eun Kyu
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 252
  • [27] Fabrication and characterization of Mg-doped ε-Ga2O3 solar-blind photodetector
    Liu, Zeng
    Huang, Yuanqi
    Li, Haoran
    Zhang, Chuang
    Jiang, Weiyu
    Guo, Daoyou
    Wu, Zhenping
    Li, Peigang
    Tang, Weihua
    VACUUM, 2020, 177 (177)
  • [28] Facile synthesis of β-Ga2O3 nanowires network for solar-blind ultraviolet photodetector
    Zhang, Miaomiao
    Kang, Shuai
    Wang, Liang
    Zhang, Kun
    Wu, Yutong
    Feng, Shuanglong
    Lu, Wenqiang
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (17)
  • [29] Influence of deposition temperature on amorphous Ga2O3 solar-blind ultraviolet photodetector
    Zhu, Wenhui
    Xiong, Lingxing
    Si, Jiawei
    Hu, Zelin
    Gao, Xiang
    Long, Linyun
    Li, Tao
    Wan, Rongqiao
    Zhang, Lei
    Wang, Liancheng
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2020, 35 (05)
  • [30] Review of β-Ga2O3 solar-blind ultraviolet photodetector: growth, device, and application
    Chen, Hao
    Li, Zhe
    Zhang, Zeyulin
    Liu, Dinghe
    Zeng, Liru
    Yan, Yiru
    Chen, Dazheng
    Feng, Qian
    Zhang, Jincheng
    Hao, Yue
    Zhang, Chunfu
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2024, 39 (06)