Stabilization of a fractional-order chaotic brushless DC motor via a single input

被引:0
|
作者
Ping Zhou
Rong-ji Bai
Ji-ming Zheng
机构
[1] Chongqing University of Posts and Telecommunications,Center of System Theory and its Applications
[2] Chongqing University of Posts and Telecommunications,Key Laboratory of Network Control and Intelligent Instrument of Ministry of Education
来源
Nonlinear Dynamics | 2015年 / 82卷
关键词
Fractional-order brushless DC motor; Chaotic attractor ; Generalized Gronwall inequality; Mittag–Leffler function; Control of chaos;
D O I
暂无
中图分类号
学科分类号
摘要
A fractional-order brushless DC motor (BLDCM) system is proposed in this paper. By computer simulations, we find that the fractional-order BLDCM system exhibits a chaotic attractor for fractional order 0.96<q≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.96 < q \le 1$$\end{document}, and that the largest Lyapunov exponent varies depending on fractional-order q. Furthermore, in order to stabilize the fractional-order chaotic BLDCM system, two control strategies are presented via single input, based on the generalized Gronwall inequality and the Mittag–Leffler function. Numerical simulations are presented to verify the validity and feasibility of the proposed control schemes.
引用
收藏
页码:519 / 525
页数:6
相关论文
共 50 条
  • [21] Control fractional-order continuous chaotic system via a simple fractional-order controller
    Zhang, Dong
    Yang, Shou-liang
    [J]. INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 770 - 773
  • [22] Control and Synchronization of the Fractional-Order Lorenz Chaotic System via Fractional-Order Derivative
    Zhou, Ping
    Ding, Rui
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [23] Stabilization of class of fractional-order chaotic system via new sliding mode control
    Bourouba, Bachir
    Ladaci, Samir
    [J]. 2017 6TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC' 17), 2017, : 470 - 475
  • [24] Using fractional-order integrator to control chaos in single-input chaotic systems
    Mohammad Saleh Tavazoei
    Mohammad Haeri
    Sadegh Bolouki
    Milad Siami
    [J]. Nonlinear Dynamics, 2009, 55 : 179 - 190
  • [25] Using fractional-order integrator to control chaos in single-input chaotic systems
    Tavazoei, Mohammad Saleh
    Haeri, Mohammad
    Bolouki, Sadegh
    Siami, Milad
    [J]. NONLINEAR DYNAMICS, 2009, 55 (1-2) : 179 - 190
  • [26] Finite time synchronization of fractional-order brushless DC motor systems by soft variable structure control
    Han, Wei
    Gao, Bingkun
    Guo, Haoxuan
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 218 - 223
  • [27] Robust Stabilization of Fractional-Order Systems with Interval Uncertainties via Fractional-Order Controllers
    Saleh Sayyad Delshad
    MohammadMostafa Asheghan
    Mohammadtaghi Hamidi Beheshti
    [J]. Advances in Difference Equations, 2010
  • [28] Robust Stabilization of Fractional-Order Systems with Interval Uncertainties via Fractional-Order Controllers
    Delshad, Saleh Sayyad
    Asheghan, Mohammad Mostafa
    Beheshti, Mohammadtaghi Hamidi
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [29] Single Active Element Realization of Fractional-Order /ADP' DC Motor Controller
    Kapoulea, Stavroula
    Psychalinos, Costas
    [J]. 2019 PANHELLENIC CONFERENCE ON ELECTRONICS AND TELECOMMUNICATIONS (PACET2019), 2019, : 1 - 4
  • [30] Chaos Synchronization of Fractional-Order Chaotic Systems With Input Saturation
    Khamsuwan, Pitcha
    Sangpet, Teerawat
    Kuntanapreeda, Suwat
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (09):