Stabilization of a fractional-order chaotic brushless DC motor via a single input

被引:0
|
作者
Ping Zhou
Rong-ji Bai
Ji-ming Zheng
机构
[1] Chongqing University of Posts and Telecommunications,Center of System Theory and its Applications
[2] Chongqing University of Posts and Telecommunications,Key Laboratory of Network Control and Intelligent Instrument of Ministry of Education
来源
Nonlinear Dynamics | 2015年 / 82卷
关键词
Fractional-order brushless DC motor; Chaotic attractor ; Generalized Gronwall inequality; Mittag–Leffler function; Control of chaos;
D O I
暂无
中图分类号
学科分类号
摘要
A fractional-order brushless DC motor (BLDCM) system is proposed in this paper. By computer simulations, we find that the fractional-order BLDCM system exhibits a chaotic attractor for fractional order 0.96<q≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.96 < q \le 1$$\end{document}, and that the largest Lyapunov exponent varies depending on fractional-order q. Furthermore, in order to stabilize the fractional-order chaotic BLDCM system, two control strategies are presented via single input, based on the generalized Gronwall inequality and the Mittag–Leffler function. Numerical simulations are presented to verify the validity and feasibility of the proposed control schemes.
引用
收藏
页码:519 / 525
页数:6
相关论文
共 50 条
  • [41] LMI-based stabilization of a class of fractional-order chaotic systems
    Faieghi, Mohammadreza
    Kuntanapreeda, Suwat
    Delavari, Hadi
    Baleanu, Dumitru
    [J]. NONLINEAR DYNAMICS, 2013, 72 (1-2) : 301 - 309
  • [42] Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model
    Matouk, A. E.
    Elsadany, A. A.
    [J]. NONLINEAR DYNAMICS, 2016, 85 (03) : 1597 - 1612
  • [43] α-Exponential Stabilization of Fractional-Order Chaotic System by Controlling Partial States
    Wan, Peng
    Jian, Jigui
    [J]. 2016 31ST YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2016, : 329 - 333
  • [44] Linear Control of Fractional-Order Financial Chaotic Systems with Input Saturation
    Luo, Junhai
    Li, Guanjun
    Liu, Heng
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [45] The exponential synchronization of a class of fractional-order chaotic systems with discontinuous input
    Su, Haipeng
    Luo, Runzi
    Zeng, Yanhui
    [J]. OPTIK, 2017, 131 : 850 - 861
  • [46] Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model
    A. E. Matouk
    A. A. Elsadany
    [J]. Nonlinear Dynamics, 2016, 85 : 1597 - 1612
  • [47] LMI-based stabilization of a class of fractional-order chaotic systems
    Mohammadreza Faieghi
    Suwat Kuntanapreeda
    Hadi Delavari
    Dumitru Baleanu
    [J]. Nonlinear Dynamics, 2013, 72 : 301 - 309
  • [48] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [49] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    Zhou Ping
    Cheng Yuan-Ming
    Kuang Fei
    [J]. CHINESE PHYSICS B, 2010, 19 (09)
  • [50] Adaptive stabilization of an incommensurate fractional order chaotic system via a single state controller
    张若洵
    杨世平
    [J]. Chinese Physics B, 2011, 20 (11) : 159 - 166