On the Convergence of Time Splitting Methods for Quantum Dynamics in the Semiclassical Regime

被引:0
|
作者
François Golse
Shi Jin
Thierry Paul
机构
[1] École polytechnique,CMLS
[2] Shanghai Jiao Tong University,School of Mathematical Sciences, Institute of Natural Sciences, MOE
[3] École polytechnique,LSC
[4] Sorbonne Université,CNRS and CMLS
关键词
Evolutionary equations; Time-dependent Schrödinger equations; Exponential operator splitting methods; Wasserstein distance; 65L05; 65M12; 65J10; 81C05;
D O I
暂无
中图分类号
学科分类号
摘要
By using the pseudo-metric introduced in Golse and Paul (Arch Ration Mech Anal 223:57–94, 2017), which is an analogue of the Wasserstein distance of exponent 2 between a quantum density operator and a classical (phase-space) density, we prove that the convergence of time splitting algorithms for the von Neumann equation of quantum dynamics is uniform in the Planck constant ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document}. We obtain explicit uniform in ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document} error estimates for the first-order Lie–Trotter, and the second-order Strang splitting methods.
引用
收藏
页码:613 / 647
页数:34
相关论文
共 50 条