On the Convergence of Time Splitting Methods for Quantum Dynamics in the Semiclassical Regime

被引:0
|
作者
François Golse
Shi Jin
Thierry Paul
机构
[1] École polytechnique,CMLS
[2] Shanghai Jiao Tong University,School of Mathematical Sciences, Institute of Natural Sciences, MOE
[3] École polytechnique,LSC
[4] Sorbonne Université,CNRS and CMLS
关键词
Evolutionary equations; Time-dependent Schrödinger equations; Exponential operator splitting methods; Wasserstein distance; 65L05; 65M12; 65J10; 81C05;
D O I
暂无
中图分类号
学科分类号
摘要
By using the pseudo-metric introduced in Golse and Paul (Arch Ration Mech Anal 223:57–94, 2017), which is an analogue of the Wasserstein distance of exponent 2 between a quantum density operator and a classical (phase-space) density, we prove that the convergence of time splitting algorithms for the von Neumann equation of quantum dynamics is uniform in the Planck constant ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document}. We obtain explicit uniform in ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document} error estimates for the first-order Lie–Trotter, and the second-order Strang splitting methods.
引用
收藏
页码:613 / 647
页数:34
相关论文
共 50 条
  • [31] Ergodicity and scars of the quantum cat map in the semiclassical regime
    Wang, J
    Lai, CH
    Gu, Y
    PHYSICAL REVIEW E, 2001, 63 (05): : 562081 - 5620812
  • [32] Quantum corrections to inflaton dynamics: The semiclassical approach and the semiclassical limit
    Herranen, Matti
    Osland, Asgeir
    Tranberg, Anders
    PHYSICAL REVIEW D, 2015, 92 (08):
  • [33] Semiclassical description of nonadiabatic quantum dynamics
    Stock, G
    Thoss, M
    PHYSICAL REVIEW LETTERS, 1997, 78 (04) : 578 - 581
  • [34] The semiclassical limit of a quantum Zeno dynamics
    Cunden, Fabio Deelan
    Facchi, Paolo
    Ligabo, Marilena
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (06)
  • [35] Semiclassical dynamics of excess quantum noise
    van Exter, MP
    van Druten, NJ
    van der Lee, AM
    Dutra, SM
    Nienhuis, G
    Woerdman, JP
    PHYSICAL REVIEW A, 2001, 63 (04): : 1 - 13
  • [36] Semiclassical nonadiabatic dynamics with quantum trajectories
    Rassolov, VA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U2843 - U2843
  • [37] Semiclassical nonadiabatic dynamics with quantum trajectories
    Rassolov, VA
    Garashchuk, S
    PHYSICAL REVIEW A, 2005, 71 (03)
  • [38] The semiclassical limit of a quantum Zeno dynamics
    Fabio Deelan Cunden
    Paolo Facchi
    Marilena Ligabò
    Letters in Mathematical Physics, 113
  • [39] Semiclassical dynamics based on quantum trajectories
    Garashchuk, S
    Rassolov, VA
    CHEMICAL PHYSICS LETTERS, 2002, 364 (5-6) : 562 - 567
  • [40] Forward-backward semiclassical and quantum trajectory methods for time correlation functions
    Makri, Nancy
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (32) : 14442 - 14452