Efficient methods for linear Schrodinger equation in the semiclassical regime with time-dependent potential

被引:20
|
作者
Bader, Philipp [1 ]
Iserles, Arieh [2 ]
Kropielnicka, Karolina [3 ]
Singh, Pranav [2 ]
机构
[1] La Trobe Univ, Dept Math, Kingsbury Dr, Melbourne, Vic 3086, Australia
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
[3] Univ Gdansk, Inst Math, 57 Stwosz St, PL-90952 Gdansk, Poland
基金
澳大利亚研究理事会;
关键词
numerical analysis; Schrodinger equation; exponential splitting; QUANTUM CONTROL; APPROXIMATION;
D O I
10.1098/rspa.2015.0733
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We build efficient and unitary (hence stable) methods for the solution of the linear time-dependent Schrodinger equation with explicitly time-dependent potentials in a semiclassical regime. The Magnus-Zassenhaus schemes presented here are based on a combination of the Zassenhaus decomposition (Bader et al. 2014 Found. Comput. Math. 14, 689-720. (doi: 10.1007/s10208-013-9182-8)) with the Magnus expansion of the time-dependent Hamiltonian. We conclude with numerical experiments.
引用
收藏
页数:18
相关论文
共 50 条