On the Factor Opposing the Lebesgue Norm in Generalized Grand Lebesgue Spaces

被引:0
|
作者
Alberto Fiorenza
Maria Rosaria Formica
机构
[1] Università di Napoli Federico II,Dipartimento di Architettura
[2] Consiglio Nazionale delle Ricerche,Istituto per le Applicazioni del Calcolo “Mauro Picone”, sezione di Napoli
[3] Università degli Studi di Napoli Parthenope,undefined
来源
Results in Mathematics | 2021年 / 76卷
关键词
Lebesgue spaces; Grand Lebesgue spaces; Orlicz spaces; Fundamental function; condition; Norm blow-up; Banach function spaces; 46E30; 26A12;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document} and δ:]0,p-1]→]0,∞[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta :]0,p-1]\rightarrow ]0,\infty [$$\end{document} is continuous, nondecreasing, and satisfies the Δ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _2$$\end{document} condition near the origin, then [graphic not available: see fulltext] This result permits to clarify the assumptions on the increasing function against the Lebesgue norm in the definition of generalized grand Lebesgue spaces and to sharpen and simplify the statements of some known results concerning these spaces.
引用
收藏
相关论文
共 50 条
  • [41] Inequalities with conjugate exponents in grand Lebesgue spaces
    Erlin Castillo, Rene
    Rafeiro, Humberto
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (01): : 33 - 39
  • [42] On the Duality of Grand Bochner-Lebesgue Spaces
    Jain, P.
    Singh, M.
    Singh, A. P.
    Stepanov, V. D.
    MATHEMATICAL NOTES, 2020, 107 (1-2) : 247 - 256
  • [43] A note on the continuity of minors in grand Lebesgue spaces
    Molchanova, Anastasia
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (02)
  • [44] Bochner–Riesz operators in grand lebesgue spaces
    Maria Rosaria Formica
    Eugeny Ostrovsky
    Leonid Sirota
    Journal of Pseudo-Differential Operators and Applications, 2021, 12
  • [46] Identification of Fully Measurable Grand Lebesgue Spaces
    Anatriello, Giuseppina
    Chill, Ralph
    Fiorenza, Alberto
    JOURNAL OF FUNCTION SPACES, 2017, 2017
  • [47] Extrapolation in Grand Lebesgue Spaces with Aa Weights
    Kokilashvili, V.
    Meskhi, A.
    MATHEMATICAL NOTES, 2018, 104 (3-4) : 518 - 529
  • [48] Bounded Operators on Mixed Norm Lebesgue Spaces
    Evseev, Nikita
    Menovschikov, Alexander
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (05) : 2239 - 2258
  • [49] Sawyer Duality Principle in Grand Lebesgue Spaces
    P. Jain
    A. P. Singh
    M. Singh
    V. D. Stepanov
    Doklady Mathematics, 2018, 97 : 18 - 19
  • [50] Sawyer Duality Principle in Grand Lebesgue Spaces
    Jain, P.
    Singh, A. P.
    Singh, M.
    Stepanov, V. D.
    DOKLADY MATHEMATICS, 2018, 97 (01) : 18 - 19