On the Factor Opposing the Lebesgue Norm in Generalized Grand Lebesgue Spaces

被引:0
|
作者
Alberto Fiorenza
Maria Rosaria Formica
机构
[1] Università di Napoli Federico II,Dipartimento di Architettura
[2] Consiglio Nazionale delle Ricerche,Istituto per le Applicazioni del Calcolo “Mauro Picone”, sezione di Napoli
[3] Università degli Studi di Napoli Parthenope,undefined
来源
Results in Mathematics | 2021年 / 76卷
关键词
Lebesgue spaces; Grand Lebesgue spaces; Orlicz spaces; Fundamental function; condition; Norm blow-up; Banach function spaces; 46E30; 26A12;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document} and δ:]0,p-1]→]0,∞[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta :]0,p-1]\rightarrow ]0,\infty [$$\end{document} is continuous, nondecreasing, and satisfies the Δ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _2$$\end{document} condition near the origin, then [graphic not available: see fulltext] This result permits to clarify the assumptions on the increasing function against the Lebesgue norm in the definition of generalized grand Lebesgue spaces and to sharpen and simplify the statements of some known results concerning these spaces.
引用
收藏
相关论文
共 50 条
  • [21] Iterated grand and small Lebesgue spaces
    Anatriello, Giuseppina
    COLLECTANEA MATHEMATICA, 2014, 65 (02) : 273 - 284
  • [22] On the Duality of Grand Bochner–Lebesgue Spaces
    P. Jain
    M. Singh
    A. P. Singh
    V. D. Stepanov
    Mathematical Notes, 2020, 107 : 247 - 256
  • [23] Composition Operators in Grand Lebesgue Spaces
    A. Karapetyants
    M. Lanza de Cristoforis
    Analysis Mathematica, 2023, 49 : 151 - 166
  • [24] Iterated grand and small Lebesgue spaces
    Giuseppina Anatriello
    Collectanea Mathematica, 2014, 65 : 273 - 284
  • [25] Complex interpolation of grand Lebesgue spaces
    Denny Ivanal Hakim
    Mitsuo Izuki
    Yoshihiro Sawano
    Monatshefte für Mathematik, 2017, 184 : 245 - 272
  • [26] Mixed Norm Inequalities for Lebesgue Spaces
    Jain, Pankaj
    Kumari, Santosh
    Singh, Monika
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2020, 90 (05) : 783 - 787
  • [27] THE FORGOTTEN PARAMETER IN GRAND LEBESGUE SPACES
    Capone, Claudia
    Fiorenza, Alberto
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2023, 177 (02) : 165 - 168
  • [28] Composition Operators in Grand Lebesgue Spaces
    Karapetyants, A.
    Lanza de Cristoforis, Massimo
    ANALYSIS MATHEMATICA, 2023, 49 (01) : 151 - 166
  • [29] Fully measurable grand Lebesgue spaces
    Anatriello, G.
    Fiorenza, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (02) : 783 - 797
  • [30] Complex interpolation of grand Lebesgue spaces
    Hakim, Denny Ivanal
    Izuki, Mitsuo
    Sawano, Yoshihiro
    MONATSHEFTE FUR MATHEMATIK, 2017, 184 (02): : 245 - 272