On the Factor Opposing the Lebesgue Norm in Generalized Grand Lebesgue Spaces

被引:0
|
作者
Alberto Fiorenza
Maria Rosaria Formica
机构
[1] Università di Napoli Federico II,Dipartimento di Architettura
[2] Consiglio Nazionale delle Ricerche,Istituto per le Applicazioni del Calcolo “Mauro Picone”, sezione di Napoli
[3] Università degli Studi di Napoli Parthenope,undefined
来源
Results in Mathematics | 2021年 / 76卷
关键词
Lebesgue spaces; Grand Lebesgue spaces; Orlicz spaces; Fundamental function; condition; Norm blow-up; Banach function spaces; 46E30; 26A12;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document} and δ:]0,p-1]→]0,∞[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta :]0,p-1]\rightarrow ]0,\infty [$$\end{document} is continuous, nondecreasing, and satisfies the Δ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _2$$\end{document} condition near the origin, then [graphic not available: see fulltext] This result permits to clarify the assumptions on the increasing function against the Lebesgue norm in the definition of generalized grand Lebesgue spaces and to sharpen and simplify the statements of some known results concerning these spaces.
引用
收藏
相关论文
共 50 条
  • [31] Norm convolution inequalities in Lebesgue spaces
    Nursultanov, Erlan
    Tikhonov, Sergey
    Tleukhanova, Nazerke
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (02) : 811 - 838
  • [32] Grand and small norms in Lebesgue spaces
    Berezhnoi, Evgeny
    Karapetyants, Alexey
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) : 725 - 741
  • [33] Grand and small Lebesgue spaces and their analogs
    Fiorenza, A
    Karadzhov, GE
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2004, 23 (04): : 657 - 681
  • [34] Extrapolation in Grand Lebesgue Spaces with A∞ Weights
    V. Kokilashvili
    A. Meskhi
    Mathematical Notes, 2018, 104 : 518 - 529
  • [35] Generalized singular integral on Carleson curves in weighted grand Lebesgue spaces
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    Paatashvili, Vakhtang
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2016, 170 (02) : 212 - 214
  • [36] Approximation by matrix transforms in generalized grand Lebesgue spaces with variable exponent
    Testici, Ahmet
    Israfilov, Daniyal M.
    APPLICABLE ANALYSIS, 2021, 100 (04) : 819 - 834
  • [37] Hardy-Littlewood maximal operator in generalized grand Lebesgue spaces
    Umarkhadzhiev, Salaudin M.
    10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2014), 2014, 1637 : 1137 - 1142
  • [38] Hausdorff Operator on Weighted Lebesgue and Grand Lebesgue p-Adic Spaces
    Bandaliyev, R. A.
    Volosivets, S. S.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2019, 11 (02) : 114 - 122
  • [39] EXTRAPOLATION THEOREMS IN LEBESGUE AND GRAND LEBESGUE SPACES FOR QUASI-MONOTONE FUNCTIONS
    Singh, Arun Pal
    Panchal, Rahul
    Jain, Pankaj
    Singh, Monika
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2023, 177 (02) : 275 - 288
  • [40] Hausdorff Operator on Weighted Lebesgue and Grand Lebesgue p-Adic Spaces
    R. A. Bandaliyev
    S. S. Volosivets
    p-Adic Numbers, Ultrametric Analysis and Applications, 2019, 11 : 114 - 122