On the Factor Opposing the Lebesgue Norm in Generalized Grand Lebesgue Spaces

被引:0
|
作者
Alberto Fiorenza
Maria Rosaria Formica
机构
[1] Università di Napoli Federico II,Dipartimento di Architettura
[2] Consiglio Nazionale delle Ricerche,Istituto per le Applicazioni del Calcolo “Mauro Picone”, sezione di Napoli
[3] Università degli Studi di Napoli Parthenope,undefined
来源
Results in Mathematics | 2021年 / 76卷
关键词
Lebesgue spaces; Grand Lebesgue spaces; Orlicz spaces; Fundamental function; condition; Norm blow-up; Banach function spaces; 46E30; 26A12;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document} and δ:]0,p-1]→]0,∞[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta :]0,p-1]\rightarrow ]0,\infty [$$\end{document} is continuous, nondecreasing, and satisfies the Δ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _2$$\end{document} condition near the origin, then [graphic not available: see fulltext] This result permits to clarify the assumptions on the increasing function against the Lebesgue norm in the definition of generalized grand Lebesgue spaces and to sharpen and simplify the statements of some known results concerning these spaces.
引用
收藏
相关论文
共 50 条
  • [1] On the Factor Opposing the Lebesgue Norm in Generalized Grand Lebesgue Spaces
    Fiorenza, Alberto
    Formica, Maria Rosaria
    RESULTS IN MATHEMATICS, 2021, 76 (02)
  • [2] APPROXIMATION IN WEIGHTED GENERALIZED GRAND LEBESGUE SPACES
    Israfilov, Daniyal M.
    Testici, Ahmet
    COLLOQUIUM MATHEMATICUM, 2016, 143 (01) : 113 - 126
  • [3] Approximation In Weighted Generalized Grand Lebesgue Spaces
    Jafarov, Sadulla
    APPLIED MATHEMATICS E-NOTES, 2018, 18 : 140 - 147
  • [4] Generalized Grand Lebesgue Spaces Associated to Banach Function Spaces
    Salec, AliReza Bagheri
    Tabatabaie, Seyyed Mohammad
    Albeka, Alaa Mahdi Talib
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (03): : 431 - 440
  • [5] Boyd Indices in Generalized Grand Lebesgue Spaces and Applications
    Maria Rosaria Formica
    Raffaella Giova
    Mediterranean Journal of Mathematics, 2015, 12 : 987 - 995
  • [6] Weighted Sobolev inequality in grand mixed norm Lebesgue spaces
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    POSITIVITY, 2021, 25 (01) : 273 - 288
  • [7] Weighted Sobolev inequality in grand mixed norm Lebesgue spaces
    Vakhtang Kokilashvili
    Alexander Meskhi
    Positivity, 2021, 25 : 273 - 288
  • [8] Boyd Indices in Generalized Grand Lebesgue Spaces and Applications
    Formica, Maria Rosaria
    Giova, Raffaella
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) : 987 - 995
  • [9] Hardy type inequalities in generalized grand Lebesgue spaces
    Joel E. Restrepo
    Durvudkhan Suragan
    Advances in Operator Theory, 2021, 6
  • [10] Inclusions and the approximate identities of the generalized grand Lebesgue spaces
    Gurkanli, A. Turan
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (06) : 3195 - 3203