Existence of positive ground state solutions to a nonlinear fractional Schrödinger system with linear couplings

被引:0
|
作者
Xinsheng Du
Anmin Mao
Ke Liu
机构
[1] Qufu Normal University,School of Mathematical Sciences
来源
Journal of Inequalities and Applications | / 2020卷
关键词
Ground state solution; Fractional Schrödinger system; Variational methods; Nehari manifold; 35J50; 35A01; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate a nonlinear fractional Schrödinger system with linear couplings as follows: {(−Δ)αu+(1+a(x))u=Fu(u,v)+λv,in R3,(−Δ)αv+(1+b(x))v=Fv(u,v)+λu,in R3,u,v∈Hα(R3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} (-\Delta )^{\alpha }u+(1+a(x))u=F_{u}(u,v)+\lambda v,& \text{in } \mathbb{R}^{3}, \\ (-\Delta )^{\alpha }v+(1+b(x))v=F_{v}(u,v)+\lambda u,& \text{in } \mathbb{R}^{3}, \\ u,v\in H^{\alpha }(\mathbb{R}^{3}), \end{cases} $$\end{document} where (−Δ)α,α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta )^{\alpha }, \alpha \in (0,1)$\end{document}, denotes the fractional Laplacian and λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda >0$\end{document} is the coupling parameter. Under some assumptions, we prove the existence of positive ground state solutions to the above system with the help of the method of Nehari manifold and concentration compactness lemma.
引用
收藏
相关论文
共 50 条
  • [41] The existence and local uniqueness of normalized peak solutions to fractional nonlinear Schrödinger equations
    Guo, Qing
    Wang, Chunhua
    Yang, Jing
    MANUSCRIPTA MATHEMATICA, 2025, 176 (01)
  • [42] Existence and dynamics of normalized solutions to nonlinear Schrödinger equations with mixed fractional Laplacians
    Lassaad Chergui
    Tianxiang Gou
    Hichem Hajaiej
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [43] Global existence for the nonlinear fractional Schrödinger equation with fractional dissipation
    Darwich M.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2018, 64 (2) : 323 - 334
  • [44] Multiple positive solutions for Schrödinger systems with mixed couplings
    Yohei Sato
    Zhi-Qiang Wang
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 1373 - 1392
  • [45] Ground state solutions for a non-autonomous nonlinear Schrödinger-KdV system
    Wenjing Bi
    Chunlei Tang
    Frontiers of Mathematics in China, 2020, 15 : 851 - 866
  • [46] Existence of solutions for a Schrodinger system with linear and nonlinear couplings
    Li, Kui
    Zhang, Zhitao
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (08)
  • [47] On the existence of ground state solutions to nonlinear Schrödinger equations with multisingular inverse-square anisotropic potentials
    Veronica Felli
    Journal d'Analyse Mathématique, 2009, 108 : 189 - 217
  • [48] Existence and Concentration of Semi-classical Ground State Solutions for Chern–Simons–Schrödinger System
    Lin-Jing Wang
    Gui-Dong Li
    Chun-Lei Tang
    Qualitative Theory of Dynamical Systems, 2021, 20
  • [49] DECAY PROPERTIES AND ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS FOR THE NONLINEAR FRACTIONAL SCHRöDINGER-POISSON SYSTEM
    Liu, Lintao
    Chen, Haibo
    Yang, Jie
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (06): : 3136 - 3157
  • [50] Ground state solutions for the fractional Schr?dinger-Poisson system involving doubly critical exponents
    Pu, Yang
    Li, Hongying
    Liao, Jiafeng
    AIMS MATHEMATICS, 2022, 7 (10): : 18311 - 18322