Existence of positive ground state solutions to a nonlinear fractional Schrödinger system with linear couplings

被引:0
|
作者
Xinsheng Du
Anmin Mao
Ke Liu
机构
[1] Qufu Normal University,School of Mathematical Sciences
关键词
Ground state solution; Fractional Schrödinger system; Variational methods; Nehari manifold; 35J50; 35A01; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate a nonlinear fractional Schrödinger system with linear couplings as follows: {(−Δ)αu+(1+a(x))u=Fu(u,v)+λv,in R3,(−Δ)αv+(1+b(x))v=Fv(u,v)+λu,in R3,u,v∈Hα(R3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} (-\Delta )^{\alpha }u+(1+a(x))u=F_{u}(u,v)+\lambda v,& \text{in } \mathbb{R}^{3}, \\ (-\Delta )^{\alpha }v+(1+b(x))v=F_{v}(u,v)+\lambda u,& \text{in } \mathbb{R}^{3}, \\ u,v\in H^{\alpha }(\mathbb{R}^{3}), \end{cases} $$\end{document} where (−Δ)α,α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta )^{\alpha }, \alpha \in (0,1)$\end{document}, denotes the fractional Laplacian and λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda >0$\end{document} is the coupling parameter. Under some assumptions, we prove the existence of positive ground state solutions to the above system with the help of the method of Nehari manifold and concentration compactness lemma.
引用
收藏
相关论文
共 50 条
  • [21] Existence and concentration of positive solutions for p-fractional Schrödinger equations
    Vincenzo Ambrosio
    Giovany M. Figueiredo
    Teresa Isernia
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 317 - 344
  • [22] Ground state solutions for fractional Schrödinger equations with critical exponents
    Zhenyu Guo
    Xueqian Yan
    Proceedings - Mathematical Sciences, 132
  • [23] Existence and Concentration of Solutions for the Sublinear Fractional Schrödinger–Poisson System
    Guofeng Che
    Haibo Chen
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 2843 - 2863
  • [24] Existence and Concentration of Ground State Solutions for Chern–Simons–Schrödinger System with General Nonlinearity
    Jin-Lan Tan
    Jin-Cai Kang
    Chun-Lei Tang
    Mediterranean Journal of Mathematics, 2023, 20
  • [25] Existence of Ground State Solutions for the Schródinger-Poisson System in R2
    Yuan, Ziqing
    TAIWANESE JOURNAL OF MATHEMATICS, 2025, 29 (01): : 67 - 87
  • [26] Uniqueness of Positive Ground State Solutions of the Logarithmic Schrödinger Equation
    William C. Troy
    Archive for Rational Mechanics and Analysis, 2016, 222 : 1581 - 1600
  • [27] Existence of positive solutions for a class of critical fractional Schrödinger–Poisson system with potential vanishing at infinity
    Gu, Guangze
    Tang, Xianhua
    Zhang, Youpei
    Applied Mathematics Letters, 2020, 99
  • [28] Existence of a ground-state solution for a quasilinear Schrödinger system
    Zhang, Xue
    Zhang, Jing
    FRONTIERS IN PHYSICS, 2024, 12
  • [29] Existence and Uniqueness of Positive Solutions to Three Coupled Nonlinear Schrdinger Equations
    Guo-bei FANG
    Zhong-xue L
    Acta Mathematicae Applicatae Sinica, 2015, 31 (04) : 1021 - 1032
  • [30] Existence and uniqueness of positive solutions to three coupled nonlinear Schrödinger equations
    Guo-bei Fang
    Zhong-xue Lü
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 1021 - 1032