Existence of positive ground state solutions to a nonlinear fractional Schrödinger system with linear couplings

被引:0
|
作者
Xinsheng Du
Anmin Mao
Ke Liu
机构
[1] Qufu Normal University,School of Mathematical Sciences
来源
Journal of Inequalities and Applications | / 2020卷
关键词
Ground state solution; Fractional Schrödinger system; Variational methods; Nehari manifold; 35J50; 35A01; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate a nonlinear fractional Schrödinger system with linear couplings as follows: {(−Δ)αu+(1+a(x))u=Fu(u,v)+λv,in R3,(−Δ)αv+(1+b(x))v=Fv(u,v)+λu,in R3,u,v∈Hα(R3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} (-\Delta )^{\alpha }u+(1+a(x))u=F_{u}(u,v)+\lambda v,& \text{in } \mathbb{R}^{3}, \\ (-\Delta )^{\alpha }v+(1+b(x))v=F_{v}(u,v)+\lambda u,& \text{in } \mathbb{R}^{3}, \\ u,v\in H^{\alpha }(\mathbb{R}^{3}), \end{cases} $$\end{document} where (−Δ)α,α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta )^{\alpha }, \alpha \in (0,1)$\end{document}, denotes the fractional Laplacian and λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda >0$\end{document} is the coupling parameter. Under some assumptions, we prove the existence of positive ground state solutions to the above system with the help of the method of Nehari manifold and concentration compactness lemma.
引用
收藏
相关论文
共 50 条