Homogeneity of a Distance-Regular Graph Which Supports a Spin Model

被引:0
|
作者
Brian Curtin
Kazumasa Nomura
机构
[1] University of South Florida,Department of Mathematics
[2] Tokyo Medical and Dental University,College of Liberal Arts and Sciences
来源
关键词
distance-regular graph; 1-homogeneous; spin model;
D O I
暂无
中图分类号
学科分类号
摘要
A spin model is a square matrix that encodes the basic data for a statistical mechanical construction of link invariants due to V.F.R. Jones. Every spin model W is contained in a canonical Bose-Mesner algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}$$ \end{document}(W). In this paper we study the distance-regular graphs Γ whose Bose-Mesner algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{M}$$ \end{document} satisfies W ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{M}$$ \end{document} ⊂ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}$$ \end{document}(W). Suppose W has at least three distinct entries. We show that Γ is 1-homogeneous and that the first and the last subconstituents of Γ are strongly regular and distance-regular, respectively.
引用
收藏
页码:257 / 272
页数:15
相关论文
共 50 条
  • [21] An inequality on the cosines of a tight distance-regular graph
    Pascasio, AA
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 325 (1-3) : 147 - 159
  • [22] A distance-regular graph with strongly closed subgraphs
    Hiraki, A
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2001, 14 (02) : 127 - 131
  • [23] On automorphisms of a distance-regular graph with intersection array
    Vasilyevna, Bitkina Viktoriya
    Kazbekovna, Gutnova Alina
    Makhnev, Alexandr Alekseevich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 : 1040 - 1051
  • [24] The local eigenvalues of a bipartite distance-regular graph
    MacLean, Mark S.
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 45 : 115 - 123
  • [25] A Distance-Regular Graph with Strongly Closed Subgraphs
    Akira Hiraki
    Journal of Algebraic Combinatorics, 2001, 14 : 127 - 131
  • [26] The Q -polynomial idempotents of a distance-regular graph
    Jurisic, Aleksandar
    Terwilliger, Paul
    Zitnik, Arjana
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (06) : 683 - 690
  • [27] AUTOMORPHISMS OF A DISTANCE-REGULAR GRAPH WITH AN INTERSECTION ARRAY
    Makhnev, A. A.
    Bitkina, V. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 777 - 785
  • [28] On the coset graph construction of distance-regular graphs
    Shi, Minjia
    Krotov, Denis S.
    Sole, Patrick
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [29] The vertex-connectivity of a distance-regular graph
    Brouwer, Andries E.
    Koolen, Jack H.
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (03) : 668 - 673
  • [30] The local structure of a bipartite distance-regular graph
    Curtin, B
    EUROPEAN JOURNAL OF COMBINATORICS, 1999, 20 (08) : 739 - 758