The Q -polynomial idempotents of a distance-regular graph

被引:7
|
作者
Jurisic, Aleksandar [1 ,4 ]
Terwilliger, Paul [2 ]
Zitnik, Arjana [3 ,4 ]
机构
[1] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana, Slovenia
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
Distance-regular graphs; Q; -polynomial; Tail; Characterization; INEQUALITY;
D O I
10.1016/j.jctb.2010.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain the following characterization of Q -polynomial distance-regular graphs. Let Gamma denote a distance-regular graph with diameter d >= 3. Let Gamma denote a minimal idempotent of Gamma which is not the trivial idempotent E(0). Let (0(i)*)(i)(d)=0 denote the dual eigenvalue sequence for E. We show that E is Q -polynomial if and only if (i) the entry-wise product E o E is a linear combination of E(0). E. and at most one other minimal idempotent of Gamma; (ii) there exists a complex scalar beta such that 0*(i-1) beta 0*(i) + 0*(i+1), is independent of i for 1 <= i <= d - 1: (iii) 0(i)* not equal 0(0)* for 1 <= i <= d. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:683 / 690
页数:8
相关论文
共 50 条