Homogeneity of a Distance-Regular Graph Which Supports a Spin Model

被引:0
|
作者
Brian Curtin
Kazumasa Nomura
机构
[1] University of South Florida,Department of Mathematics
[2] Tokyo Medical and Dental University,College of Liberal Arts and Sciences
来源
关键词
distance-regular graph; 1-homogeneous; spin model;
D O I
暂无
中图分类号
学科分类号
摘要
A spin model is a square matrix that encodes the basic data for a statistical mechanical construction of link invariants due to V.F.R. Jones. Every spin model W is contained in a canonical Bose-Mesner algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}$$ \end{document}(W). In this paper we study the distance-regular graphs Γ whose Bose-Mesner algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{M}$$ \end{document} satisfies W ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{M}$$ \end{document} ⊂ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}$$ \end{document}(W). Suppose W has at least three distinct entries. We show that Γ is 1-homogeneous and that the first and the last subconstituents of Γ are strongly regular and distance-regular, respectively.
引用
收藏
页码:257 / 272
页数:15
相关论文
共 50 条