On The Sum of Digits Function for Number Systems with Negative Bases

被引:0
|
作者
Peter J. Grabner
Jörg M. Thuswaldner
机构
[1] Technische Universität Graz,Institut für Mathematik A
[2] Montanuniversität Leoben,Institut für Mathematik und Angewandte Geometrie, Abteilung für Mathematik und Statistik
来源
The Ramanujan Journal | 2000年 / 4卷
关键词
digital expansions; sum of digits; finite automata; non-differentiability;
D O I
暂无
中图分类号
学科分类号
摘要
Let q ≥ 2 be an integer. Then −q gives rise to a number system in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$$$ \end{document}, i.e., each number n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$$$ \end{document} has a unique representation of the form n = c0 + c1 (−q) + ... + ch (−q)h, with ci\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\varepsilon$$ \end{document} {0,..., q − 1}(0 ≤ i ≤ h). The aim of this paper is to investigate the sum of digits function ν−q (n) of these number systems. In particular, we derive an asymptotic expansion for\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum\limits_{n < N} {|v_{ - q} (n)} - v_{ - q} ( - n)|$$ \end{document}and obtain a Gaussian asymptotic distribution result for ν−q(n) − ν−q(−n). Furthermore, we prove non-differentiability of certain continuous functions occurring in this context. We use automata and analytic methods to derive our results.
引用
收藏
页码:201 / 220
页数:19
相关论文
共 50 条
  • [21] On the distribution of integers with missing digits under hereditary sum of digits function
    Aloui, Karam
    Feki, Firas
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 94 (3-4): : 337 - 358
  • [22] The parity of the Zeckendorf sum-of-digits function
    Michael Drmota
    Mariusz Skałba
    manuscripta mathematica, 2000, 101 : 361 - 383
  • [23] AVERAGING THE SUM OF DIGITS FUNCTION TO AN EVEN BASE
    FOSTER, DME
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1992, 35 : 449 - 455
  • [24] The truncated sum-of-digits function of powers
    Liu, H.
    Qi, Y.
    ACTA MATHEMATICA HUNGARICA, 2022, 168 (01) : 27 - 49
  • [25] The truncated sum-of-digits function of powers
    H. Liu
    Y. Qi
    Acta Mathematica Hungarica, 2022, 168 : 27 - 49
  • [26] On the hereditary sum of digits function to base q
    Feki, Firas
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2021, 36 (02) : 157 - 168
  • [27] The sum-of-digits function of polynomial sequences
    Drmota, Michael
    Mauduit, Christian
    Rivat, Joel
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 84 : 81 - 102
  • [28] The truncated sum of digits function of polynomial sequences
    Qi, Yuchan
    Liu, Huaning
    RAMANUJAN JOURNAL, 2022, 59 (01): : 1 - 29
  • [29] The truncated sum of digits function of polynomial sequences
    Yuchan Qi
    Huaning Liu
    The Ramanujan Journal, 2022, 59 : 1 - 29
  • [30] Pseudorandomness of the Ostrowski sum-of-digits function
    Spiegelhofer, Lukas
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2018, 30 (02): : 637 - 649