The truncated sum-of-digits function of powers

被引:0
|
作者
H. Liu
Y. Qi
机构
[1] School of Mathematics,Research Center for Number Theory and its Applications
[2] Northwest University,undefined
来源
Acta Mathematica Hungarica | 2022年 / 168卷
关键词
sum-of-digits function; generating function; correlation; Dirichlet character; 11A63; 11K45; 11L03; 11L40;
D O I
暂无
中图分类号
学科分类号
摘要
Let q ≥ 2 be an integer and let sq(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{q}(n)$$\end{document} be the sum-of-digitsfunction of n in base q. The function sq(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{q}(n)$$\end{document} has been studied in many directions and many properties have been obtained on the distribution of sq(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{q}(n)$$\end{document} and sq(P(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{q}(P(n))$$\end{document}, where P is a suitable polynomial. In this paper we derive the generatingfunctions of sp(ndmodpk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{p}(n^{d} {\rm mod} p^{k})$$\end{document} for d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\geq 2$$\end{document} and prime p≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\geq 2$$\end{document} by using the properties of Dirichlet character, and study the correlation properties of the sequences ((-1)n2modpk)n<pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$((-1)^{n^2 \bmod p^k})_{n<p^k}$$\end{document}.
引用
收藏
页码:27 / 49
页数:22
相关论文
共 50 条
  • [1] The truncated sum-of-digits function of powers
    Liu, H.
    Qi, Y.
    ACTA MATHEMATICA HUNGARICA, 2022, 168 (01) : 27 - 49
  • [2] The sum-of-digits function of squares
    Drmota, M
    Rivat, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 : 273 - 292
  • [3] On the distribution of the truncated sum-of-digits function of polynomial sequences in residue classes
    H. Liu
    C. Mauduit
    Acta Mathematica Hungarica, 2021, 164 : 360 - 376
  • [4] ON THE DISTRIBUTION OF THE TRUNCATED SUM-OF-DIGITS FUNCTION OF POLYNOMIAL SEQUENCES IN RESIDUE CLASSES
    Liu, H.
    Mauduit, C.
    ACTA MATHEMATICA HUNGARICA, 2021, 164 (02) : 360 - 376
  • [5] The sum-of-digits function of polynomial sequences
    Drmota, Michael
    Mauduit, Christian
    Rivat, Joel
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 84 : 81 - 102
  • [6] The sum-of-digits function for complex bases
    Grabner, PJ
    Kirschenhofer, P
    Prodinger, H
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 57 : 20 - 40
  • [7] The parity of the Zeckendorf sum-of-digits function
    Michael Drmota
    Mariusz Skałba
    manuscripta mathematica, 2000, 101 : 361 - 383
  • [8] Pseudorandomness of the Ostrowski sum-of-digits function
    Spiegelhofer, Lukas
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2018, 30 (02): : 637 - 649
  • [9] The parity of the Zeckendorf sum-of-digits function
    Drmota, M
    Skalba, M
    MANUSCRIPTA MATHEMATICA, 2000, 101 (03) : 361 - 383
  • [10] Gaussian asymptotic properties of the sum-of-digits function
    Dumont, JM
    Thomas, A
    JOURNAL OF NUMBER THEORY, 1997, 62 (01) : 19 - 38