The truncated sum-of-digits function of powers

被引:0
|
作者
H. Liu
Y. Qi
机构
[1] School of Mathematics,Research Center for Number Theory and its Applications
[2] Northwest University,undefined
来源
Acta Mathematica Hungarica | 2022年 / 168卷
关键词
sum-of-digits function; generating function; correlation; Dirichlet character; 11A63; 11K45; 11L03; 11L40;
D O I
暂无
中图分类号
学科分类号
摘要
Let q ≥ 2 be an integer and let sq(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{q}(n)$$\end{document} be the sum-of-digitsfunction of n in base q. The function sq(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{q}(n)$$\end{document} has been studied in many directions and many properties have been obtained on the distribution of sq(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{q}(n)$$\end{document} and sq(P(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{q}(P(n))$$\end{document}, where P is a suitable polynomial. In this paper we derive the generatingfunctions of sp(ndmodpk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{p}(n^{d} {\rm mod} p^{k})$$\end{document} for d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\geq 2$$\end{document} and prime p≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\geq 2$$\end{document} by using the properties of Dirichlet character, and study the correlation properties of the sequences ((-1)n2modpk)n<pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$((-1)^{n^2 \bmod p^k})_{n<p^k}$$\end{document}.
引用
收藏
页码:27 / 49
页数:22
相关论文
共 50 条
  • [21] ALPHA-EXPANSIONS, LINEAR RECURRENCES, AND THE SUM-OF-DIGITS FUNCTION
    GRABNER, PJ
    TICHY, RF
    MANUSCRIPTA MATHEMATICA, 1991, 70 (03) : 311 - 324
  • [22] On the Sum-of-digits Function over k-free Integers
    Zouari, Hichem
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (05): : 857 - 864
  • [23] The truncated sum of digits function of polynomial sequences
    Qi, Yuchan
    Liu, Huaning
    RAMANUJAN JOURNAL, 2022, 59 (01): : 1 - 29
  • [24] The truncated sum of digits function of polynomial sequences
    Yuchan Qi
    Huaning Liu
    The Ramanujan Journal, 2022, 59 : 1 - 29
  • [25] The sum-of-digits function of canonical number systems: Distribution in residue classes
    Madritsch, Manfred G.
    JOURNAL OF NUMBER THEORY, 2012, 132 (12) : 2756 - 2772
  • [26] The level of distribution of the sum-of-digits function of linear recurrence number systems
    Madritsch, Manfred G.
    Thuswaldner, Joerg M.
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (02): : 449 - 482
  • [27] Finite generating functions for the sum-of-digits sequence
    Christophe Vignat
    Tanay Wakhare
    The Ramanujan Journal, 2019, 50 : 639 - 684
  • [28] Finite generating functions for the sum-of-digits sequence
    Vignat, Christophe
    Wakhare, Tanay
    RAMANUJAN JOURNAL, 2019, 50 (03): : 639 - 684
  • [29] Dirichlet series associated to sum-of-digits functions
    Everlove, Corey
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (04) : 777 - 798
  • [30] The distribution of generalized sum-of-digits functions in residue classes
    Hoit, A
    JOURNAL OF NUMBER THEORY, 1999, 79 (02) : 194 - 216