digital expansions;
sum of digits;
finite automata;
non-differentiability;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let q ≥ 2 be an integer. Then −q gives rise to a number system in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$$$
\end{document}, i.e., each number n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$$$
\end{document} has a unique representation of the form n = c0 + c1 (−q) + ... + ch (−q)h, with ci\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\varepsilon$$
\end{document} {0,..., q − 1}(0 ≤ i ≤ h). The aim of this paper is to investigate the sum of digits function ν−q (n) of these number systems. In particular, we derive an asymptotic expansion for\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\sum\limits_{n < N} {|v_{ - q} (n)} - v_{ - q} ( - n)|$$
\end{document}and obtain a Gaussian asymptotic distribution result for ν−q(n) − ν−q(−n). Furthermore, we prove non-differentiability of certain continuous functions occurring in this context. We use automata and analytic methods to derive our results.
机构:
Northwest Univ, Res Ctr Number Theory & Its Applicat, Sch Math, Xian 710127, Peoples R ChinaNorthwest Univ, Res Ctr Number Theory & Its Applicat, Sch Math, Xian 710127, Peoples R China
Liu, Huaning
Liu, Zehua
论文数: 0引用数: 0
h-index: 0
机构:
Northwest Univ, Res Ctr Number Theory & Its Applicat, Sch Math, Xian 710127, Peoples R ChinaNorthwest Univ, Res Ctr Number Theory & Its Applicat, Sch Math, Xian 710127, Peoples R China