On The Sum of Digits Function for Number Systems with Negative Bases

被引:0
|
作者
Peter J. Grabner
Jörg M. Thuswaldner
机构
[1] Technische Universität Graz,Institut für Mathematik A
[2] Montanuniversität Leoben,Institut für Mathematik und Angewandte Geometrie, Abteilung für Mathematik und Statistik
来源
The Ramanujan Journal | 2000年 / 4卷
关键词
digital expansions; sum of digits; finite automata; non-differentiability;
D O I
暂无
中图分类号
学科分类号
摘要
Let q ≥ 2 be an integer. Then −q gives rise to a number system in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$$$ \end{document}, i.e., each number n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$$$ \end{document} has a unique representation of the form n = c0 + c1 (−q) + ... + ch (−q)h, with ci\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\varepsilon$$ \end{document} {0,..., q − 1}(0 ≤ i ≤ h). The aim of this paper is to investigate the sum of digits function ν−q (n) of these number systems. In particular, we derive an asymptotic expansion for\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum\limits_{n < N} {|v_{ - q} (n)} - v_{ - q} ( - n)|$$ \end{document}and obtain a Gaussian asymptotic distribution result for ν−q(n) − ν−q(−n). Furthermore, we prove non-differentiability of certain continuous functions occurring in this context. We use automata and analytic methods to derive our results.
引用
收藏
页码:201 / 220
页数:19
相关论文
共 50 条
  • [31] The parity of the Zeckendorf sum-of-digits function
    Drmota, M
    Skalba, M
    MANUSCRIPTA MATHEMATICA, 2000, 101 (03) : 361 - 383
  • [32] The summatory function of the sum-of-digits function on polynomial sequences
    Peter, M
    ACTA ARITHMETICA, 2002, 104 (01) : 85 - 96
  • [33] On the number of nonzero digits of the partition function
    Luca, Florian
    ARCHIV DER MATHEMATIK, 2012, 98 (03) : 235 - 240
  • [34] On the number of nonzero digits of the partition function
    Florian Luca
    Archiv der Mathematik, 2012, 98 : 235 - 240
  • [35] Primes whose sum of digits is prime and metric number theory
    Harman, Glyn
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 1042 - 1049
  • [36] 108.38 A number whose square root is the sum of its digits
    Oxman, Victor
    Stupel, Moshe
    MATHEMATICAL GAZETTE, 2024, 108 (573): : 513 - 514
  • [37] Sum of Digits
    Amghibech, S.
    Bataille, M.
    Chapman, R.
    Dalyay, P. P.
    Dumont, Y.
    Guerreiro, J.
    Kouba, O.
    Kwong, H.
    Lindsey, J. H., II
    McInturff, K.
    Pohoata, C.
    Pranesachar, C. R.
    Stadler, A.
    Stong, R.
    Tauraso, R.
    Tetiva, M.
    Troy, D.
    Beckwith, David
    AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (03): : 283 - 283
  • [38] The sum-of-digits function in rings of residue classes
    Liu, Huaning
    Liu, Zehua
    PERIODICA MATHEMATICA HUNGARICA, 2024,
  • [39] Gaussian asymptotic properties of the sum-of-digits function
    Dumont, JM
    Thomas, A
    JOURNAL OF NUMBER THEORY, 1997, 62 (01) : 19 - 38
  • [40] ESTIMATES FOR A REMAINDER TERM ASSOCIATED WITH THE SUM OF DIGITS FUNCTION
    FOSTER, DME
    GLASGOW MATHEMATICAL JOURNAL, 1987, 29 : 109 - 129